首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8568篇
  免费   593篇
  国内免费   1篇
  9162篇
  2022年   42篇
  2021年   63篇
  2020年   41篇
  2019年   61篇
  2018年   91篇
  2017年   64篇
  2016年   97篇
  2015年   157篇
  2014年   214篇
  2013年   587篇
  2012年   325篇
  2011年   341篇
  2010年   218篇
  2009年   217篇
  2008年   363篇
  2007年   405篇
  2006年   380篇
  2005年   387篇
  2004年   413篇
  2003年   350篇
  2002年   404篇
  2001年   289篇
  2000年   339篇
  1999年   292篇
  1998年   112篇
  1997年   94篇
  1996年   74篇
  1995年   101篇
  1994年   102篇
  1993年   86篇
  1992年   188篇
  1991年   235篇
  1990年   183篇
  1989年   177篇
  1988年   197篇
  1987年   167篇
  1986年   149篇
  1985年   141篇
  1984年   114篇
  1983年   86篇
  1982年   67篇
  1981年   74篇
  1980年   63篇
  1979年   77篇
  1978年   73篇
  1977年   51篇
  1976年   48篇
  1975年   45篇
  1974年   47篇
  1973年   45篇
排序方式: 共有9162条查询结果,搜索用时 15 毫秒
211.
The SARS‐CoV‐2 infection cycle is a multistage process that relies on functional interactions between the host and the pathogen. Here, we repurposed antiviral drugs against both viral and host enzymes to pharmaceutically block methylation of the viral RNA 2''‐O‐ribose cap needed for viral immune escape. We find that the host cap 2''‐O‐ribose methyltransferase MTr1 can compensate for loss of viral NSP16 methyltransferase in facilitating virus replication. Concomitant inhibition of MTr1 and NSP16 efficiently suppresses SARS‐CoV‐2 replication. Using in silico target‐based drug screening, we identify a bispecific MTr1/NSP16 inhibitor with anti‐SARS‐CoV‐2 activity in vitro and in vivo but with unfavorable side effects. We further show antiviral activity of inhibitors that target independent stages of the host SAM cycle providing the methyltransferase co‐substrate. In particular, the adenosylhomocysteinase (AHCY) inhibitor DZNep is antiviral in in vitro, in ex vivo, and in a mouse infection model and synergizes with existing COVID‐19 treatments. Moreover, DZNep exhibits a strong immunomodulatory effect curbing infection‐induced hyperinflammation and reduces lung fibrosis markers ex vivo. Thus, multispecific and metabolic MTase inhibitors constitute yet unexplored treatment options against COVID‐19.  相似文献   
212.
213.
As of January 2022, at least 60 million individuals are estimated to develop post-acute sequelae of SARS-CoV-2 (PASC) after infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While elevated levels of SARS-CoV-2-specific T cells have been observed in non-specific PASC, little is known about their impact on pulmonary function which is compromised in the majority of these individuals. This study compares frequencies of SARS-CoV-2-specific T cells and inflammatory markers with lung function in participants with pulmonary PASC and resolved COVID-19 (RC). Compared to RC, participants with respiratory PASC had between 6- and 105-fold higher frequencies of IFN-γ- and TNF-α-producing SARS-CoV-2-specific CD4+ and CD8+ T cells in peripheral blood, and elevated levels of plasma CRP and IL-6. Importantly, in PASC participants the frequency of TNF-α-producing SARS-CoV-2-specific CD4+ and CD8+ T cells, which exhibited the highest levels of Ki67 indicating they were activity dividing, correlated positively with plasma IL-6 and negatively with measures of lung function, including forced expiratory volume in one second (FEV1), while increased frequencies of IFN-γ-producing SARS-CoV-2-specific T cells associated with prolonged dyspnea. Statistical analyses stratified by age, number of comorbidities and hospitalization status demonstrated that none of these factors affect differences in the frequency of SARS-CoV-2 T cells and plasma IL-6 levels measured between PASC and RC cohorts. Taken together, these findings demonstrate elevated frequencies of SARS-CoV-2-specific T cells in individuals with pulmonary PASC are associated with increased systemic inflammation and decreased lung function, suggesting that SARS-CoV-2-specific T cells contribute to lingering pulmonary symptoms. These findings also provide mechanistic insight on the pathophysiology of PASC that can inform development of potential treatments to reduce symptom burden.  相似文献   
214.
Arthrobacter sp. KNK168 shows (R)-enantioselective transaminase [(R)-transaminase] activity, which converts prochiral ketones into the corresponding chiral (R)-amines in the presence of an amino donor. The cultural conditions and reaction conditions for asymmetric synthesis of chiral amines with this microorganism were examined. The transaminase was inducible, and its production was enhanced by the addition of sec-butylamine and 3-amino-2,2-dimethylbutane to the culture medium. (R)-1-Phenylethylamine was a good amino donor for amination of 3,4-dimethoxyphenylacetone with Arthrobacter sp. KNK168. Under the optimum conditions, 126 mM (R)-3,4-dimethoxyamphetamine (DMA) [>99% enantiomeric excess (ee)] was synthesized from 154 mM 3,4-dimethoxyphenylacetone and 154 mM (R)-1-phenylethylamine through the whole cell reaction with an 82% conversion yield. (R)-Enantiomers of other amines, such as (R)-4-methoxyamphetamine, (R)-1-(3-hydroxyphenyl)ethylamine and (R)-1-(3-hydroxyphenyl)ethylamine, were also synthesized from the corresponding carbonyl compounds through asymmetric amination with Arthrobacter sp. KNK168.  相似文献   
215.
The possibility of preventing the transmission of porcine endogenous retrovirus (PERV) to human cells using short interfering RNAs (siRNA) was investigated. The siRNA for the p30 of PERV gag region was cloned into pSUPER, the polymerase-III H1-RNA gene promoter. A green fluorescence protein (GFP) was also cloned into pSUPER to establish pSXGH. Pig endothelial cells (PEC) were transduced with the LacZ gene by pseudotype infection, and infected with PERV subtype B, resulting in the formation of PEC(LacZ)/PB. The PEC(LacZ)/PB was next transfected with pSXGH-siRNA. The expression of siRNA was provisionally checked by determining the level of expression of GFP. Culture supernatants of infected cells were then inoculated into HEK293 cells. The siRNA clearly destroyed the PERV infectivity of PEC(LacZ)/PB in both transient cell lines and stable clones. Moreover, the decreased levels of mRNA and gag protein were evidenced in the stable clones by real-time PCR and Western blotting, respectively. The final goal of our study was to establish a transgenic pig expressing the siRNA for PERV. The results suggest that siRNA represents a novel approach for controlling PERV infections in clinical xenotransplantation.  相似文献   
216.
The complete nucleotide sequence of the genome of a symbiotic bacterium Bradyrhizobium japonicum USDA110 was determined. The genome of B. japonicum was a single circular chromosome 9,105,828 bp in length with an average GC content of 64.1%. No plasmid was detected. The chromosome comprises 8317 potential protein-coding genes, one set of rRNA genes and 50 tRNA genes. Fifty-two percent of the potential protein genes showed sequence similarity to genes of known function and 30% to hypothetical genes. The remaining 18% had no apparent similarity to reported genes. Thirty-four percent of the B. japonicum genes showed significant sequence similarity to those of both Mesorhizobium loti and Sinorhizobium meliloti, while 23% were unique to this species. A presumptive symbiosis island 681 kb in length, which includes a 410-kb symbiotic region previously reported by G?ttfert et al., was identified. Six hundred fifty-five putative protein-coding genes were assigned in this region, and the functions of 301 genes, including those related to symbiotic nitrogen fixation and DNA transmission, were deduced. A total of 167 genes for transposases/104 copies of insertion sequences were identified in the genome. It was remarkable that 100 out of 167 transposase genes are located in the presumptive symbiotic island. DNA segments of 4 to 97 kb inserted into tRNA genes were found at 14 locations in the genome, which generates partial duplication of the target tRNA genes. These observations suggest plasticity of the B. japonicum genome, which is probably due to complex genome rearrangements such as horizontal transfer and insertion of various DNA elements, and to homologous recombination.  相似文献   
217.
N-glycans of a recombinant mouse soluble Fc receptor II (sFcRII) expressed in baby hamster kidney cells were released from glycopeptides by digestion with glycoamidase A (from sweet almond), and the reducing ends of the oligosaccharides were reductively aminated with 2-aminopyridine. The derivatized N-glycans were separated and structurally identified by a three-dimensional high-performance liquid chromatography (HPLC) mapping technique on three kinds of HPLC columns [Takahashi, et al. (1995) Anal. Biochem. 226: 139–46]. Eighteen different major N-glycan structures were identified, of which six were neutral (45%), five mono-sialyl (49%), one di-sialyl (4.6%), five tri-sialyl (1.1%), and one tetra-sialyl (0.3%). All N-glycan structures determined were complex type with fucosylation at the N-acetylglucosamine residue of the reducing end, and N-acetylneuraminic acid, when present, was -(2,3)-linked. The existence of a unique structure containing both N-acetylgalactosamine and -(2,3)-N-acetylneuraminic acid residues at the reducing ends, as below, was confirmed by MALDI-TOF mass spectrometry.  相似文献   
218.
A stress imposed by a continuous feed of high ethanol, high NaCl concentration, or a high temperature shock increased antibiotic production by several times in Pseudomonas fluorescens S272. A tentative bioassay showed that the stress caused about 40-fold elevation in the autoinducer activity. Addition of synthetic autoinducers, N-(3-oxododecanoyl)-L-homoserine lactone or N-(3-oxohexanoyl)-L-homoserine lactone at a concentration of more than 100 micrograms/l to a non-stressed culture also increased the antibiotic production by several times. These results suggested that the antibiotic production in P. fluorescens S272 was regulated by N-acyl-homoserine lactone and the promotive effect by stress occurred through any function that increased the autoinducer production.  相似文献   
219.
A hybrid gene consisting of the ompF promoter, the coding regions for the signal peptide, and the Ala-Glu residue of the OmpF NH2 terminus and the coding region for the major outer membrane lipoprotein devoid of the NH2-terminal cysteine residue was constructed. Escherichia coli carrying the cloned gene produced the predicted hybrid protein that is the same as the major lipoprotein except that the diacyl glycerylcysteine residue at the NH2 terminus is replaced by the Ala-Glu residue. The hybrid protein was localized in the periplasmic space as a trimer with a noncovalent interaction in addition to the previously known covalent interaction with the peptidoglycan. These results strongly indicate that the major lipoprotein exists as a trimer in the periplasmic space with covalent and noncovalent interactions with the peptidoglycan layer through the protein domain on one side and with the hydrophobic interaction with the outer membrane through the lipid domain on the other side. The trimeric structure of the lipoprotein was directly demonstrated by the chemical cross-linking of the native lipoprotein with both cleavable and uncleavable reagents. The cross-linking study also revealed interaction between the lipoprotein and the OmpA protein, a major outer membrane protein.  相似文献   
220.
By random transposon Tn5 insertions, we previously identified six virulence-associated SalI fragments, B, D, F, G, H, and P, in the 230-kilobase plasmid pMYSH6000 of Shigella flexneri 2a. In this study, we analyzed the sites of 134 independent Tn5 insertions on four contiguous SalI fragments, B, P, H, and D, of pMYSH6000 and identified five virulence-associated regions; four were associated with inducing a positive Sereny test (Ser), invasion into epithelial cells (Inv), binding to Congo red (Pcr), and inhibition of bacterial growth (Igr), and one was associated with the Ser and Inv but not with the Pcr or Igr phenotypes. Hybridization studies revealed that these virulence-associated DNA regions were highly conserved among 15 other virulence plasmids of four species of Shigella and enteroinvasive Escherichia coli. These data indicate that at least seven separate genetic determinants on the virulence plasmid are required for full expression of the virulence phenotype of shigellae.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号