首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2371篇
  免费   133篇
  国内免费   1篇
  2022年   12篇
  2021年   27篇
  2020年   11篇
  2019年   24篇
  2018年   29篇
  2017年   31篇
  2016年   49篇
  2015年   73篇
  2014年   98篇
  2013年   157篇
  2012年   150篇
  2011年   129篇
  2010年   91篇
  2009年   96篇
  2008年   154篇
  2007年   153篇
  2006年   155篇
  2005年   121篇
  2004年   147篇
  2003年   141篇
  2002年   150篇
  2001年   17篇
  2000年   27篇
  1999年   34篇
  1998年   40篇
  1997年   35篇
  1996年   40篇
  1995年   46篇
  1994年   17篇
  1993年   24篇
  1992年   25篇
  1991年   12篇
  1990年   18篇
  1989年   16篇
  1988年   9篇
  1987年   12篇
  1986年   6篇
  1985年   5篇
  1984年   10篇
  1983年   13篇
  1982年   13篇
  1981年   8篇
  1980年   13篇
  1978年   7篇
  1977年   7篇
  1976年   4篇
  1975年   5篇
  1972年   9篇
  1971年   5篇
  1970年   7篇
排序方式: 共有2505条查询结果,搜索用时 953 毫秒
171.
A 25.9-kb plasmid, pXU5, encoding high level cadmium resistance was isolated from Staphylococcus aureus strain ATCC25923. A labelled cadA probe from plasmid pI258 hybridised to a 2.3-kb EcoRI fragment of pXU5. pXU5 was incompatible with an S. aureus incompatibility group 1 plasmid.  相似文献   
172.
Takeuchi Y  Akagi H  Kamasawa N  Osumi M  Honda H 《Planta》2000,211(2):265-274
 NADP-dependent malic enzyme (NADP-ME) is a major decarboxylating enzyme in NADP-ME-type C4 species such as maize and Flaveria. In this study, chloroplastic NADP-ME was transferred to rice (Oryza sativa L.) using a chimeric gene composed of maize NADP-ME cDNA under the control of rice light-harvesting chlorophyll-a/b-binding protein (Cab) promoter. There was a 20- to 70-fold increase in the NADP-ME activity in leaves of transgenic rice compared to that in wild-type rice plants. Immunocytochemical studies by electron microscopy showed that maize NADP-ME was mostly localized in chloroplasts in transgenic rice plants, and that the chloroplasts were agranal without thylakoid stacking. Chlorophyll content and photosystem II activity were inversely correlated with the level of NADP-ME activity. These results suggest that aberrant chloroplasts in transgenic plants may be caused by excessive NADP-ME activity. Based on these results and the known fact that only bundle sheath cells of NADP-ME species, among all three C4 subgroups, have agranal chloroplasts, we postulate that a high level of chloroplastic NADP-ME activity could strongly affect the development of chloroplasts. Received: 27 January 1999 / Accepted: 20 January 2000  相似文献   
173.
The molecular architecture of the cytomatrix of presynaptic nerve terminals is poorly understood. Here we show that Bassoon, a novel protein of >400,000 M r, is a new component of the presynaptic cytoskeleton. The murine bassoon gene maps to chromosome 9F. A comparison with the corresponding rat cDNA identified 10 exons within its protein-coding region. The Bassoon protein is predicted to contain two double-zinc fingers, several coiled-coil domains, and a stretch of polyglutamines (24 and 11 residues in rat and mouse, respectively). In some human proteins, e.g., Huntingtin, abnormal amplification of such poly-glutamine regions causes late-onset neurodegeneration. Bassoon is highly enriched in synaptic protein preparations. In cultured hippocampal neurons, Bassoon colocalizes with the synaptic vesicle protein synaptophysin and Piccolo, a presynaptic cytomatrix component. At the ultrastructural level, Bassoon is detected in axon terminals of hippocampal neurons where it is highly concentrated in the vicinity of the active zone. Immunogold labeling of synaptosomes revealed that Bassoon is associated with material interspersed between clear synaptic vesicles, and biochemical studies suggest a tight association with cytoskeletal structures. These data indicate that Bassoon is a strong candidate to be involved in cytomatrix organization at the site of neurotransmitter release.  相似文献   
174.
Acylation of anthocyanins with hydroxycinnamic acid derivatives is one of the most important and less understood modification reactions during anthocyanin biosynthesis. Anthocyanin aromatic acyltransferase catalyses the transfer of hydroxycinnamic acid moieties from their CoA esters to the glycosyl groups of anthocyanins. A full-length cDNA encoding the anthocyanin 5-aromatic acyltransferase (5AT) ( EC 2.3.1.153 ) that acylates the glucose bound at the 5-position of anthocyanidin 3,5-diglucoside was isolated from petals of Gentiana triflora on the basis of the amino acid sequence of the purified enzyme. The isolated full-length cDNA had an open reading frame of 469 amino acids and the calculated molecular weight was 52 736. The deduced amino acid sequence contains consensus motifs that are conserved among the putative acyl CoA-mediated acyltransferases, and this indicates that 5AT is a member of a proposed superfamily of multifunctional acyltransferases ( St-Pierre et al . (1998 ) Plant J. 14, 703–713). The cDNA was expressed in Escherichia coli and yeast, and confirmed to encode 5AT. The enzymatic characteristics of the recombinant 5AT were consistent with those of the native gentian 5AT. Immunoblot analysis using specific antibodies to 5AT showed that the 5AT protein is present in petals, but not in sepals, stems or leaves of G. triflora . RNA blot analysis showed that the 5AT gene is expressed only in petals and that its expression is temporally regulated during flower development coordinately with other anthocyanin biosynthetic genes. Immunohistochemical analysis demonstrated that the 5AT protein is specifically expressed in the outer epidermal cells of gentian petals and that it is localized mainly in the cytosol.  相似文献   
175.
Summary The objective of this study was to determine if an immortalized mammalian chondrocyte cell line had a profile of matrix metalloproteinase (MMP) expression that was consistent with what has been reported for primary chondrocytes in vitro and in vivo. A combination of zymography, Western, and Northern analysis was used to examine the expression of MMPs that are relevant to cartilage degradation. Both interleukin-1β and tumor necrosis factor α induced a 4- to 9-fold increase in the level of MMP-9 expression in conditioned media, and a 17- to 24-fold increase in MMP-3 mRNA. Other compounds such as basic fibroblast growth factor and staurosporine each increased MMP-9 expression individually and potentiated the effects of the two cytokines. Transforming growth factor β had no positive or inhibitory effects. N-methyl arginine blocked the increase in nitric oxide observed following treatment with the cytokines but did not prevent the increased expression of MMPs. The pattern of metalloproteinase expression observed in IRC cells and the response to cytokines is very similar to what has been reported during the pathogenesis of osteoarthritis. The IRC cells should be useful as a model system to study basic mechanisms controlling chondrocyte MMP expression and to identify pharmacological modulators of this process.  相似文献   
176.
The relative contents (RCs) of elements in the human menisci from 23 subjects in the age range between 65 and 93 yr were analyzed by inductively coupled plasma atomic emission spectrometry. The RCs of sulfur, calcium, and phosphorus in menisci increased progressively until the 80s, being the highest in the 80s, and thereafter decreased. The RCs of magnesium in menisci increased progressively until the 90s. Regarding the medial and lateral menisci, higher RCs of magnesium and iron, and a lower RC of phosphorus were found in lateral menisci in comparison with those in medial menisci. There were sexual differences in the RCs of calcium and phosphorus of medial and lateral menisci. The RCs of calcium and phosphorus were about 50% higher in women’s menisci than in men’s. Histological examinations showed that structureless mucoid masses were observed in the menisci, with very high RCs of calcium and phosphorus being detected.  相似文献   
177.
178.
The order Trichosporonales (Tremellomycotina, Basidiomycota) includes various species that have clinical, agricultural and biotechnological value. Thus, understanding why and how evolutionary diversification occurred within this order is extremely important. This study clarified the phylogenetic relationships among Tricosporonales species. To select genes suitable for phylogenetic analysis, we determined the draft genomes of 17 Trichosporonales species and extracted 30 protein-coding DNA sequences (CDSs) from genomic data. The CDS regions of Trichosporon asahii and T. faecale were identified by referring to mRNA sequence data since the intron positions of the respective genes differed from those of Cryptococcus neoformans (outgroup) and are not conserved within this order. A multiple alignment of the respective gene was first constructed using the CDSs of T. asahii, T. faecale and C. neoformans, and those of other species were added and aligned based on codons. The phylogenetic trees were constructed based on each gene and a concatenated alignment. Resolution of the maximum-likelihood trees estimated from the concatenated dataset based on both nucleotide (72,531) and amino acid (24,173) sequences were greater than in previous reports. In addition, we found that several genes, such as phosphatidylinositol 3-kinase TOR1 and glutamate synthase (NADH), had good resolution in this group (even when used alone). Our study proposes a set of genes suitable for constructing a phylogenetic tree with high resolution to examine evolutionary diversification in Trichosporonales. These can also be used for epidemiological and biogeographical studies, and may also serve as the basis for a comprehensive reclassification of pleomorphic fungi.  相似文献   
179.
The downstream functions of the DNA binding tumor suppressor p53 vary depending on the cellular context, and persistent p53 activation has recently been implicated in tumor suppression and senescence. However, genome-wide information about p53-target gene regulation has been derived mostly from acute genotoxic conditions. Using ChIP-seq and expression data, we have found distinct p53 binding profiles between acutely activated (through DNA damage) and chronically activated (in senescent or pro-apoptotic conditions) p53. Compared to the classical ‘acute’ p53 binding profile, ‘chronic’ p53 peaks were closely associated with CpG-islands. Furthermore, the chronic CpG-island binding of p53 conferred distinct expression patterns between senescent and pro-apoptotic conditions. Using the p53 targets seen in the chronic conditions together with external high-throughput datasets, we have built p53 networks that revealed extensive self-regulatory ‘p53 hubs’ where p53 and many p53 targets can physically interact with each other. Integrating these results with public clinical datasets identified the cancer-associated lipogenic enzyme, SCD, which we found to be directly repressed by p53 through the CpG-island promoter, providing a mechanistic link between p53 and the ‘lipogenic phenotype’, a hallmark of cancer. Our data reveal distinct phenotype associations of chronic p53 targets that underlie specific gene regulatory mechanisms.  相似文献   
180.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号