首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1795篇
  免费   100篇
  国内免费   1篇
  1896篇
  2022年   10篇
  2021年   18篇
  2020年   6篇
  2019年   10篇
  2018年   13篇
  2017年   17篇
  2016年   27篇
  2015年   55篇
  2014年   55篇
  2013年   128篇
  2012年   89篇
  2011年   87篇
  2010年   50篇
  2009年   61篇
  2008年   101篇
  2007年   97篇
  2006年   104篇
  2005年   76篇
  2004年   115篇
  2003年   100篇
  2002年   120篇
  2001年   41篇
  2000年   39篇
  1999年   39篇
  1998年   29篇
  1997年   29篇
  1996年   29篇
  1995年   25篇
  1994年   16篇
  1993年   25篇
  1992年   37篇
  1991年   16篇
  1990年   24篇
  1989年   25篇
  1988年   18篇
  1987年   18篇
  1986年   14篇
  1985年   9篇
  1984年   8篇
  1983年   14篇
  1982年   9篇
  1981年   8篇
  1980年   8篇
  1978年   8篇
  1977年   7篇
  1976年   8篇
  1975年   10篇
  1972年   8篇
  1970年   7篇
  1968年   6篇
排序方式: 共有1896条查询结果,搜索用时 15 毫秒
101.
Arai F  Hirao A  Ohmura M  Sato H  Matsuoka S  Takubo K  Ito K  Koh GY  Suda T 《Cell》2004,118(2):149-161
The quiescent state is thought to be an indispensable property for the maintenance of hematopoietic stem cells (HSCs). Interaction of HSCs with their particular microenvironments, known as the stem cell niches, is critical for adult hematopoiesis in the bone marrow (BM). Here, we demonstrate that HSCs expressing the receptor tyrosine kinase Tie2 are quiescent and antiapoptotic, and comprise a side-population (SP) of HSCs, which adhere to osteoblasts (OBs) in the BM niche. The interaction of Tie2 with its ligand Angiopoietin-1 (Ang-1) induced cobblestone formation of HSCs in vitro and maintained in vivo long-term repopulating activity of HSCs. Furthermore, Ang-1 enhanced the ability of HSCs to become quiescent and induced adhesion to bone, resulting in protection of the HSC compartment from myelosuppressive stress. These data suggest that the Tie2/Ang-1 signaling pathway plays a critical role in the maintenance of HSCs in a quiescent state in the BM niche.  相似文献   
102.
A method for the determination of trivalent arsenicals in urine was examined. Trivalent arsenicals, extracted as complexes with diethylammonium diethyldithiocarbamate (DDDC) into carbon tetrachloride, were determined by liquid chromatography-inductively coupled plasma mass spectrometry (LC-ICP-MS). The trivalent methylated arsenicals monomethylarsonous acid (MMA(III)), dimethylarsinous acid (DMA(III)), and trimethylarsine (TMA) were detected in urine of rats that had received dimethylarsinic acid (DMA(V)) or monomethylarsonic acid (MMA(V)) at concentration of 200 microg ml(-1) in drinking water for 24 weeks. This method is the first to permit quantification of trivalent methylated arsenicals in urine without significant changes in concentration during storage or pretreatment.  相似文献   
103.
104.
One of the two X chromosomes becomes inactivated during early development of female mammals. Recent studies demonstrate that the inactive X chromosome is rich in histone H3 methylated at Lys-9 and Lys-27, suggesting an important role for these modifications in X-inactivation. It has been shown that in the mouse Eed is required for maintenance of X-inactivation in the extraembryonic lineages. Interestingly, Eed associates with Ezh2 to form a complex possessing histone methyltransferase activity predominantly for H3 Lys-27. We previously showed that G9a is one of the histone methyltransferases specific for H3 Lys-9 and is essential for embryonic development. Here we examined X-inactivation in mouse embryos deficient for G9a. Expression of Xist, which is crucial for the initiation of X-inactivation, was properly regulated and the inactivated X chromosome was stably maintained even in the absence of G9a. These results demonstrate that G9a is not essential for X-inactivation.  相似文献   
105.
Activation of a signaling cascade by cytoskeleton stretch   总被引:7,自引:0,他引:7  
Cells sense and respond to mechanical force. However, the mechanisms of transduction of extracellular matrix (ECM) forces to biochemical signals are not known. After removing the cell membrane and soluble proteins by Triton X-100 extraction, we found that the remaining complex (Triton cytoskeletons) activated Rap1 upon stretch. Rap1 guanine nucleotide exchange factor, C3G, was required for this activation; C3G as well as the adaptor protein, CrkII, in cell extract bound to Triton cytoskeletons in a stretch-dependent manner. CrkII binding, which was Cas dependent, correlated with stretch-dependent tyrosine phosphorylation of proteins in Triton cytoskeletons including Cas at the contacts with ECM. These in vitro findings were compatible with in vivo observations of stretch-enhanced phosphotyrosine signals, accumulation of CrkII at cell-ECM contacts, and CrkII-Cas colocalization. We suggest that mechanical force on Triton cytoskeletons activates local tyrosine phosphorylation, which provides docking sites for cytosolic proteins, and initiates signaling to activate Rap1.  相似文献   
106.
Colchicine, a known microtubule disrupting agent, produces a human myopathy, characterized by accumulation of lysosomes. We have created a reliable animal model of colchicine myopathy that replicates the subacute myopathy seen in humans, reproducing the chronic proximal weakness and vacuolar changes in nonnecrotic myofibers. If a microtubule network plays a role in lysosomal function in muscle, disturbance of it could alter degradation of intrinsic membrane receptors, presumably at some intracellular processing site or at exocytosis. Thus, we examined, as a possible cellular pathogenesis of colchicine myopathy, how the muscle cytoskeleton affects the degradation of membrane proteins, which are processed through the endosomal/lysosomal pathway. We used the acetylcholine receptor as a model membrane component in cultured myotubes allowed to preincubate with colchicine. We tested at which step colchicine interferes with receptor trafficking by accounting for internalization, delivery to lysosomes, hydrolysis, or exocytotic release of debris. We report that colchicine significantly decreases the exocytosis of AChRs but does not affect receptor internalization, lysosomal hydrolysis, or the number of surface membrane receptors. Further, our immunofluorescence observations revealed a morphologic tubulin network in rat skeletal muscle that is more densely distributed in white (mitochondria-poor) muscle fibers than in red (mitochondria-rich) fibers but is present in both. Ultrastructurally, immunogold labeling localized tubulin in the intermyofibrillar region in a long and linear fashion, unassociated with myofibers or mitochondria. Taken together, our findings suggest the following: (1) Microtubules likely play a functional role in the pathway of lysosomal degradation in normal adult skeletal muscle; (2) The observed decrease in overall apparent degradation of membrane receptors by colchicine must be due primarily to inhibition of exocytosis. These data indicate that lysosomal "constipation" underlies colchicine myopathy. (3) An animal model faithful to the human disorder will allow further pathogenetic studies.  相似文献   
107.
The DNase I from canine pancreas was purified 260-fold to electrophoretic homogeneity with a 35% yield using three-step column chromatography. The activity of the purified enzyme was completely inhibited by 20 mM EDTA, an antibody specific to the purified enzyme and G-actin. A 1,373-bp cDNA encoding canine DNase I was constructed from the total canine pancreatic RNA using a rapid amplification of cDNA ends method, followed by sequencing. The mature canine DNase I protein was found to consist of 262 amino acids. A survey of DNase I in 13 different canine tissues revealed the highest levels of both DNase I enzyme activity and gene expression in the pancreas; therefore, the canine DNase I is of the pancreatic type. Phylogenetic and sequence identity analyses, studies of immunological properties and the tissue-distribution patterns of DNase I indicated that the canine enzyme is more closely related to the human DNase I than to other mammalian DNases I. Therefore, canine DNase I is found to be one of the best substitutes in studies of human DNase I.  相似文献   
108.
The groESL locus of a protein-hypersecreting bacterium, Bacillus brevis, was cloned by PCR using primers designed based on the DNA sequence of a B. subtilis homolog. GroEL protein was purified to apparent homogeneity and its ATPase activity was characterized: it hydrolyzed ATP, CTP, and TTP in this order of reaction rate, and its specific activity for ATP was 0.1 micromole/min/mg protein. Purified GroEL forms a tetradecamer. GroEL was estimated to contain 22% alpha-helix, 24% beta-sheet, and 19% turn structures, by CD measurement. GroES protein was also highly purified to examine its chaperonin activity. GroEL protected from thermal inactivation of and showed refolding-promoting activity for malate dehydrogenase, strictly depending on the presence of ATP and GroES.  相似文献   
109.
Ethanol can potentiate serotonin type 3 (5-HT(3)) receptor-mediated responses in various neurons and in cells expressing 5-HT(3A) receptors. However, the molecular basis for alcohol modulation of 5-HT(3) receptor function has not been determined. Here we report that point mutations of the arginine at amino acid 222 in the N-terminal domain of the 5-HT(3A) receptor can alter the EC(50) value of the 5-HT concentration-response curve. Some point mutations at amino acid 222 resulted in spontaneous opening of the 5-HT(3A) receptor channel and an inward current activated by ethanol in the absence of agonist. Among these mutant receptors, the amplitude of the current activated by ethanol in the absence of agonist was correlated with the amplitude of the current resulting from spontaneous channel openings, suggesting that the sensitivity of the receptor to ethanol in the absence of agonist is, at least in part, dependent on the preexisting conformational equilibrium of the receptor protein. On the other hand, point mutations that conferred greater sensitivity to ethanol potentiation of agonist-activated responses were less sensitive or insensitive to ethanol in the absence of agonist. For these receptors, the magnitude of the potentiation of agonist-activated responses by ethanol was inversely correlated with the EC(50) values of the 5-HT concentration-response curves, suggesting that these mutations may modulate ethanol sensitivity of the receptor by altering the EC(50) value of the receptor. Thus, distinct molecular processes may determine the sensitivity of 5-HT(3A) receptors to ethanol in the absence and presence of agonist.  相似文献   
110.
Cell cycle checkpoints and apoptosis function as surveillance mechanisms in somatic tissues. However, some of these mechanisms are lacking or are restricted during the preimplantation stage. Previously, we reported the presence of a novel Trp53-dependent S-phase checkpoint that suppresses pronuclear DNA synthesis in mouse zygotes fertilized with X-irradiated sperm (sperm-irradiated zygotes) (Shimura et al., Mol. Cell. Biol. 22, 2220-2228, 2002). Here we studied the role of the Trp53-dependent S-phase checkpoint in the early stage of development of sperm-irradiated zygotes. In the Trp53(+/+) genetic background, all of the sperm-irradiated zygotes cleaved successfully to the two-cell stage despite the fact that half of them carried a sub-2N amount of DNA. These zygotes progressed normally to the eight-cell stage and then implanted, but the subsequent fetal development was suppressed in a dose-dependent manner. In contrast, sperm-irradiated Trp53(-/-) embryos lacking an S-phase checkpoint exhibited an abnormal segregation of chromosomes at the first cleavage, even though they carried an apparently normal 2N amount of DNA. They were morphologically abnormal with numerous micronuclei, and they degenerated before reaching the eight-cell stage. As a consequence, no implants were observed for sperm-irradiated Trp53(-/-) embryos. These results suggest that the Trp53-dependent S-phase checkpoint is a surveillance mechanism involved in the repair of chromosome damage and ensures the preimplantation-stage development of sperm-irradiated embryos.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号