首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1186篇
  免费   56篇
  2023年   2篇
  2022年   9篇
  2021年   14篇
  2020年   6篇
  2019年   7篇
  2018年   11篇
  2017年   15篇
  2016年   19篇
  2015年   39篇
  2014年   42篇
  2013年   100篇
  2012年   66篇
  2011年   60篇
  2010年   39篇
  2009年   46篇
  2008年   72篇
  2007年   78篇
  2006年   83篇
  2005年   57篇
  2004年   83篇
  2003年   75篇
  2002年   86篇
  2001年   8篇
  2000年   13篇
  1999年   21篇
  1998年   24篇
  1997年   13篇
  1996年   20篇
  1995年   19篇
  1994年   5篇
  1993年   13篇
  1992年   9篇
  1991年   5篇
  1990年   8篇
  1989年   8篇
  1988年   4篇
  1987年   5篇
  1984年   4篇
  1983年   10篇
  1982年   3篇
  1981年   4篇
  1980年   6篇
  1978年   4篇
  1977年   5篇
  1975年   5篇
  1972年   2篇
  1971年   2篇
  1970年   4篇
  1967年   1篇
  1962年   1篇
排序方式: 共有1242条查询结果,搜索用时 15 毫秒
991.
We studied how mitochondrial uncoupling by β(3)-adrenergic stimulation elicits Ca(2+) signals in rodent brown adipocytes by fluorometry of Ca(2+) concentrations ([Ca(2+)](i), [Ca(2+)](m) and [Ca(2+)](ER)) in the cytoplasm, mitochondria and the endoplasmic reticulum (ER), respectively, and mitochondrial membrane potential, using fura-2, rhod-5N, cameleon and rhodamine 123. Immunoblotting demonstrated α(1A)- and β(3)-adrenergic receptor and UCP1 in adipocytes, while RT-PCR revealed the mRNA of type 3, 7 and 9 adenylate cyclase, UCP1, UCP2, UCP3 and type 1 and 2 inositoltrisphosphate receptors. Isoproterenol and BRL37344, β-agonist, caused triphasic rises in [Ca(2+)](i) (β-responses) with mitochondrial depolarization in adipocytes. BRL37344 transiently decreased [Ca(2+)](m). β-Responses were blocked by propranolol, β-antagonist, H-89, protein kinase A blocker, and knockout of UCP1 gene. The late phase of β-responses was depressed by a Ca(2+) free, EGTA solution, U73122, a phospholipase C blocker, and thapsigargin, ER-Ca(2+) pump blocker, and by transfecting siRNA for type 2 IP(3)R. Intracellular loading of BAPTA/AM depressed the late phase more strongly than the initial phase. β-Agonists, phenylephrine, α-agonist, and cyclopiazonic acid, ER-Ca(2+) pump blocker, decreased [Ca(2+)](ER). Thus, the mitochondrial uncoupling by β(3)-adrenergic activation causes Ca(2+) release from mitochondria and subsequently from the ER and further evokes plasmalemmal Ca(2+) entries, including the store-operated Ca(2+) entry.  相似文献   
992.
993.
It is widely accepted that muscle cells take either force-generating or relaxing state in an all-or-none fashion through the so-called excitation–contraction coupling. On the other hand, the membrane-less contractile apparatus takes the third state, i.e., the auto-oscillation (SPOC) state, at the activation level that is intermediate between full activation and relaxation. Here, to explain the dynamics of all three states of muscle, we construct a novel theoretical model based on the balance of forces not only parallel but also perpendicular to the long axis of myofibrils, taking into account the experimental fact that the spacing of myofilament lattice changes with sarcomere length and upon contraction. This theory presents a phase diagram composed of several states of the contractile apparatus and explains the dynamic behavior of SPOC, e.g., periodical changes in sarcomere length with the saw-tooth waveform. The appropriate selection of the constant of the molecular friction due to the cross-bridge formation can explain the difference in the SPOC periods observed under various activating conditions and in different muscle types, i.e., skeletal and cardiac. The theory also predicts the existence of a weak oscillation state at the boundary between SPOC and relaxation regions in the phase diagram. Thus, the present theory comprehensively explains the characteristics of auto-oscillation and contraction in the contractile system of striated muscle.  相似文献   
994.
AimsNonsteroidal anti-inflammatory drugs are a therapeutic modality for chronic cancer pain arising from bone metastases. Chronic administration of a cyclooxygenase (COX)-2 inhibitor is effective to bone cancer-related pain. However, adverse cardiovascular effects have limited COX-2 inhibitor therapy, and elucidation of better targets for blocking prostaglandin (PG) biosynthesis is necessary. Microsomal PGE synthase-1 (mPGES-1) is an inducible enzyme that catalyzes isomerization of the endoperoxide PGH2 to PGE2. To investigate the validity of mPGES-1 as a therapeutic target, we evaluated bone cancer pain-related behaviors in mPGES-1 knockout (PGES-1?/?) mice.Main methodsLewis lung carcinoma cells (LLCCs) were injected into the intramedullary space of the femur of wild-type (WT) and PGES-1?/? mice. Pain-related behaviors were evaluated.Key findingsPGES-1?/? mice exhibited reduced tumor growth in bone marrow compared to WT. The expression of pro-calcitonin gene-related peptide (CGPR) in the dorsal root ganglia of L1–5 was significantly higher in WT mice at day 14, whereas it was unchanged in mPGES-1 mice. In the observation of pain-related behaviors, mPGES-1?/? mice exhibited significantly fewer spontaneous flinches and their onset was several days later than WT. The appearance of other pain-related behaviors in mPGES-1?/? mice was also delayed as compared to WT. LLCC-injected WT mice treated with a COX-2 inhibitor, celecoxib, exhibited similar temporal changes to mPGES1?/?.SignificanceThe present results suggest that mPGES-1 plays a crucial role in the enhancement of bone cancer growth and bone cancer pain, and that inhibition of mPGES-1 may have clinical utility in the management of bone cancer pain.  相似文献   
995.
Cytotoxicity assays of azolato-bridged dinuclear Pt(II) complexes, [{cis-Pt(NH(3))(2)}(2)(μ-OH)(μ-azolato)](2+), where the azolato was pyrazolato (1), 1,2,3-triazolato-N1,N2 (2), tetrazolato-N1,N2 (3), or tetrazolato-N2,N3 (4), were performed in cisplatin-sensitive and -resistant human non-small-cell lung cancer cell lines (PC-9 and PC-14). These complexes largely circumvented the cisplatin resistance in both cell lines, with resistance factors for 1-4 in the range of 0.5-0.8 and 0.9-2.0 for PC-9 and PC-14 cells, respectively. Complex 4 exhibited approximately 10 times the cytotoxicity of 3. When 3 and 4 were reacted with 2 molar equiv. of 9-ethylguanine (9EtG), they yielded an identical product, [{cis-Pt(NH(3))(2)(9EtG-N7)}(2)(μ-tetrazolato-N1,N3)](3+), that had N1,N3 platinum coordination through a Pt(II) migration process on the tetrazolate ring. The second-order rate kinetics of these isomers were almost the same as each other and faster than those of 1 and 2. The cytotoxicity of azolato-bridged complexes, except for 3, increases as their kinetic rates in the 9EtG reaction increase.  相似文献   
996.
We had previously identified the mutant allele of apm1+ that encodes a homolog of the mammalian μ 1A subunit of the clathrin-associated adaptor protein-1 (AP-1) complex and demonstrated that the AP-1 complex plays a role in Golgi/endosome trafficking, secretion, and vacuole fusion in fission yeast. Here, we isolated a mutant allele of its4+/sip1+, which encodes a conserved AP-1 accessory protein. The its4-1/sip1-i4 mutants and apm1 -deletion cells exhibited similar phenotypes, including sensitivity to the calcineurin inhibitor FK506, Cl and valproic acid as well as various defects in Golgi/endosomal trafficking and cytokinesis. Electron micrographs of sip1-i4 mutants revealed vacuole fragmentation and accumulation of abnormal Golgi-like structures and secretory vesicles. Overexpression of Apm1 suppressed defective membrane trafficking in sip1-i4 mutants. The Sip1-green fluorescent protein (GFP) co-localized with Apm1-mCherry at Golgi/endosomes, and Sip1 physically interacted with each subunit of the AP-1 complex. We found that Sip1 was a Golgi/endosomal protein and the sip1-i4 mutation affected AP-1 localization at Golgi/endosomes, thus indicating that Sip1 recruited the AP-1 complex to endosomal membranes by physically interacting with each subunit of this complex. Furthermore, Sip1 is required for the correct localization of Bgs1/Cps1, 1,3-β-D-glucan synthase to polarized growth sites. Consistently, the sip1-i4 mutants displayed a severe sensitivity to micafungin, a potent inhibitor of 1,3-β-D-glucan synthase. Taken together, our findings reveal a role for Sip1 in the regulation of Golgi/endosome trafficking in coordination with the AP-1 complex, and identified Bgs1, required for cell wall synthesis, as the new cargo of AP-1-dependent trafficking.  相似文献   
997.
998.
Kiyono M  Oka Y  Sone Y  Tanaka M  Nakamura R  Sato MH  Pan-Hou H  Sakabe K  Inoue K 《Planta》2012,235(4):841-850
The bacterial merC gene from the Tn21-encoded mer operon is a potential molecular tool for improving the efficiency of metal phytoremediation. Arabidopsis SNARE molecules, including SYP111, SYP121, and AtVAM3 (SYP22), were attached to the C-terminus of MerC to target the protein to various organelles. The subcellular localization of transiently expressed GFP-fused MerC-SYP111, MerC-SYP121, and MerC-AtVAM3 was examined in Arabidopsis suspension-cultured cells. We found that GFP-MerC-SYP111 and GFP-MerC-SYP121 localized to the plasma membrane, whereas GFP-AtVAM3 localized to the vacuolar membranes. These results demonstrate that SYP111/SYP121 and AtVAM3 target foreign molecules to the plasma membrane and vacuolar membrane, respectively. To enhance the efficiency and potential of plants to sequester and accumulate cadmium from contaminated sites, transgenic Arabidopsis plants expressing MerC, MerC-SYP111, MerC-SYP121, or MerC-AtVAM3 were generated. The transgenic plants that expressed MerC, MerC-SYP121, or MerC-AtVAM3 appeared to be normal, whereas the transgenic that expressed MerC-SYP111 exhibited severe growth defects. The transgenic plants expressing merC-SYP121 were more resistant to cadmium than the wild type and accumulated significantly more cadmium. Thus, the expression of MerC-SYP121 in the plant plasma membrane may provide an ecologically compatible approach for the phytoremediation of cadmium pollution.  相似文献   
999.
Spiro-lactone (S)-1 is a potent acetyl-CoA carboxylase (ACC) inhibitor and was found to be metabolically liable in human hepatic microsomes. To remove one of the risk factors in human study by improving the metabolic stability, we focused on modifying the spiro-lactone ring and the benzothiophene portion of the molecule. Spiro-imide derivative 8c containing a 6-methylthieno[2,3-b]pyridine core exhibited potent ACC inhibitory activity and favorable pharmacokinetic profiles in rats.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号