首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3560篇
  免费   198篇
  国内免费   2篇
  2022年   18篇
  2021年   44篇
  2020年   22篇
  2019年   43篇
  2018年   43篇
  2017年   55篇
  2016年   79篇
  2015年   120篇
  2014年   127篇
  2013年   213篇
  2012年   237篇
  2011年   213篇
  2010年   147篇
  2009年   155篇
  2008年   203篇
  2007年   212篇
  2006年   194篇
  2005年   203篇
  2004年   179篇
  2003年   179篇
  2002年   181篇
  2001年   49篇
  2000年   39篇
  1999年   64篇
  1998年   40篇
  1997年   43篇
  1996年   37篇
  1995年   29篇
  1994年   21篇
  1993年   35篇
  1992年   56篇
  1991年   50篇
  1990年   44篇
  1989年   48篇
  1988年   36篇
  1987年   22篇
  1986年   32篇
  1985年   25篇
  1984年   30篇
  1983年   25篇
  1982年   30篇
  1981年   17篇
  1980年   10篇
  1979年   14篇
  1978年   17篇
  1977年   7篇
  1974年   16篇
  1973年   6篇
  1972年   6篇
  1970年   6篇
排序方式: 共有3760条查询结果,搜索用时 125 毫秒
991.
A cathepsin B-like enzyme from the white muscle of common mackerel Scomber japonicus was a cysteine protease that hydrolyzed Z-Arg-Arg-MCA, the substrate for cathepsin B. In a partial purified cathepsin B-like enzyme preparation at 4 degrees C left over time, a converted enzyme that hydrolyzes Z-Arg-Arg-MCA and Z-Phe-Arg-MCA appeared in the preparation. The converted enzyme was purified from the cathepsin B-like enzyme, characterized and was identified as mackerel cathepsin B. These results suggested that the mackerel cathepsin B-like enzyme was a precursor of cathepsin B. Mackerel cathepsin B formed in the purified cathepsin B-like enzyme preparation by adding of a small amount of the purified cathepsin B to the preparation. Therefore, mackerel cathepsin B-like enzyme was converted to the mature form of cathepsin B by autoactivation. The conversion of the cathepsin B-like enzyme (molecular mass 60 kDa) to cathepsin B (molecular mass 23 kDa) was detected by immunoblotting by using human anti-(cathepsin B) antibody. The intermediate forms of 40 kDa and 38 kDa were also detected during the conversion.  相似文献   
992.
The search for exploitable biology is a major task for biotechnology-based industries. In this context, discrimination between previously tested or recovered micro-organisms (dereplication) is imperative, in order to reduce screening costs by sorting large collections of isolates, which are then subjected to further detailed evaluation. Pyrolysis mass spectrometry (PyMS) is a whole-cell fingerprinting technique that enables the rapid and reproducible sorting of micro-organisms, uses small samples and has the advantage of being fully automated. In this study, we compare chemometric fingerprinting with a ribotyping fingerprinting method, in order to investigate the extent to which pyrogroups formed by PyMS analysis relate to genetic diversity, using polymerase chain reaction-restriction fragment length polymorphism-single-strand conformational polymorphism (PRS). A mixture of environmental strains of mycolic acid containing actinomycetes was used to mimic the selection of colonies from primary isolation plates. The congruence found between the clusters defined by the chemometric and molecular fingerprinting techniques was very high and demonstrated the effectiveness of PyMS as a rapid sorting and dereplicating procedure for putatively novel strains, criteria that are critical for biotechnological screens. Moreover, PyMS analysis revealed significant variation within pyrogroups that contained strains with the same genotypic (PRS) characteristics, thus emphasising its discriminatory capacity at the infraspecies level.  相似文献   
993.
We have established a new hematopoietic cell line from a patient with myelodysplastic syndrome (MDS), which was refractory anemia with excess blasts (RAEB). This cell line, designated TER-3, depends on several cytokines for long-term survival and growth, and requires interleukin-3 (IL-3) for continuous growth. Cytochemical analysis revealed that TER-3 cells are weakly dianisidine positive and nonspecific esterase positive, but peroxidase negative. The surface marker profile shows that the TER-3 cells are strongly positive for myeloid, lymphoid, and megakaryocytic antigens such as CD15, CD19, and CD61, and negative for some common multilineage antigens such as CD13, CD33, and CD34. Thus, this cell line has a multilineage phenotype, suggesting that the transformation event occurred in multipotent stem cells. Dianisidine- and nonspecific esterase-positive TER-3 cells increase with granulocyte-colony stimulating factor (G-CSF) rather than with IL-3. These results suggest that the cell line is useful for understanding the mechanism underlying G-CSF-associated hematopoietic cell differentiation and activation in the patient with MDS.  相似文献   
994.
The quasi-monoclonal mouse has limited B cell diversity, whose major (approximately 80%) B cell Ag receptors are comprised of the knockin V(H) 17.2.25 (V(H)T)-encoded H chain and the lambda1 or lambda2 L chain, thereby being specific for 4-hydroxy-3-nitrophenylacetyl. The p-nitrophenylacetyl (pNP) was found to be a low affinity analog of nitrophenylacetyl. We examined affinity maturation of anti-pNP IgG by analyzing mAbs obtained from quasi-monoclonal mice that were immunized with this low affinity Ag. The results are: 1) Although V(H)T/lambda1 and V(H)T/lambda2 IgM were equally produced, V(H)T/lambda2 IgG almost exclusively underwent affinity maturation toward pNP. 2) A common mutation in complementarity-determining region 3 of V(H)T (T313A) mainly contributed to generating the specificity for pNP. 3) Because mutated V(H)T-encoded gamma-chains could form lambda1-bearing IgG in Chinese hamster ovary cells, apparent absence of V(H)T/lambda1 anti-pNP IgG may not be due to the incompatibility between the gamma-chains and the lambda1-chain, but may be explained by the fact that V(H)T/lambda1 B cells showed 50- to 100-fold lower affinity for pNP than V(H)T/lambda2 B cells. 4) Interestingly, a pNP-specific IgM mAb that shared common mutations including T313A with high affinity anti-pNP IgG was isolated, suggesting that a part of hypermutation coupled with positive selection can occur before isotype switching. Thus, even weak B cell receptor engagement can elicit an IgM response, whereas only B cells that received signals stronger than a threshold may be committed to an affinity maturation process.  相似文献   
995.
Lysophosphatidic acid is a multifunctional phospholipid mediator and elicits a variety of biological responses in vitro and in vivo. Evidence is accumulating that lysophosphatidic acid plays important physiological roles in diverse mammalian tissues and cells. In the present study, we first examined whether lysophosphatidic acid is present in human saliva. We found that a significant amount of lysophosphatidic acid is present in the saliva (0.785 nmol/ml). The predominant fatty acyl moiety of lysophosphatidic acid was 18:1n-9 + n-7 followed by 18:0 and 16:0. A small amount of lysoplasmanic acid, an alkyl ether-linked analog of lysophosphatidic acid, was also detected in the saliva (0.104 nmol/ml). We found that physiologically relevant concentrations of lysophosphatidic acid induced accelerated growth of cells of mouth, pharynx, and esophagus origin in vitro. Lysophosphatidic acid also induced rapid increases in the intracellular free Ca2+ concentrations in these cells. We obtained evidence that lysophosphatidic acid receptor mRNAs are actually present in these cells. These results strongly suggest that lysophosphatidic acid is involved in wound healing in the upper digestive organs such as the mouth, pharynx, and esophagus.  相似文献   
996.
The present study was conducted to critically determine the protective role of IL-18 in host response to Mycobacterium tuberculosis infection. IL-18-deficient (knockout (KO)) mice were slightly more prone to this infection than wild-type (WT) mice. Sensitivity of IL-12p40KO mice was lower than that of IL-12p40/IL-18 double KO mice. IFN-gamma production caused by the infection was significantly attenuated in IL-18KO mice compared with WT mice, as indicated by reduction in the levels of this cytokine in sera, spleen, lung, and liver, and its synthesis by spleen cells restimulated with purified protein derivatives. Serum IL-12p40 level postinfection and its production by peritoneal exudate cells stimulated with live bacilli were also significantly lower in IL-18KO mice than WT mice, suggesting that attenuated production of IFN-gamma was secondary to reduction of IL-12 synthesis. However, this was not likely the case, because administration of excess IL-12 did not restore the reduced IFN-gamma production in IL-18KO mice. In further studies, IL-18 transgenic mice were more resistant to the infection than control littermate mice, and serum IFN-gamma level and its production by restimulated spleen cells were increased in the former mice. Taken together, our results indicate that IL-18 plays an important role in Th1 response and host defense against M. tuberculosis infection although the contribution was not as profound as that of IL-12p40.  相似文献   
997.
Fission yeast cells identify growing regions at the opposite ends of the cell, producing the rod-like shape. The positioning of the growth zone(s) and the polarized growth require CLIP170-like protein Tip1 and the Ndr kinase Orb6, respectively. Here, we show that the mor2/cps12 mutation disrupts the localization of F-actin at the cell ends, producing spherical cells and concomitantly inducing a G(2) delay at 36 degrees C. Mor2 is important for the localization of F-actin at the cell end(s) but not at the medial region, and is essential for the restriction of the growth zone(s) where Tip1 targets. Mor2 is homologous to the Drosophila Furry protein, which is required to maintain the integrity of cellular extensions, and is localized at both cell ends and the medial region of the cell in an actin-dependent fashion. Cellular localization of Mor2 and Orb6 was interdependent. The tyrosine kinase Wee1 is necessary for the G(2) delay and maintenance of viability of the mor2 mutant. These results indicate that Mor2 plays an essential role in cell morphogenesis in concert with Orb6, and the mutation activates the mechanism coordinating morphogenesis with cell cycle progression.  相似文献   
998.
999.
PTB-like protein (PTBLP) is a new homologue of pyrimidine tract binding protein (PTB), and has been cloned as a possible autoantigen in cancer-associated retinopathy. PTBLP has two functional domains, the nuclear localization signal and the RNA recognition motifs (RRMs). Full-length PTBLP (PTBLP-L) has four RRMs, and its alternative splicing product (PTBLP-S) lacks the third and fourth RRMs. Although PTBLPs are expressed in neuronal tissues, the function of PTBLPs has not been determined. We have studed whether PTBLP plays a role in neuronal differentiation using PC12 cells. During the process of nerve growth factor-induced neuronal differentiation of PC12 cells, PTBLP-L was down-regulated whereas PTBLP-S was up-regulated. Transfection of PTBLP-L into PC12 cells led to the suppression of neuronal differentiation. In PTBLP-S transfected cells, however, this suppression was not evident. When both PTBLP-L and PTBLP-S were co-transfected, the suppressive effect of PTBLP-L decreased. In differentiated cells, PTBLP-S localized in the nucleus and PTBLP-L was found dispersed throughout the cytoplasm and neuronal growth cone. These findings suggest that PTBLP-L acts as a negative regulator of neuronal differentiation and PTBLP-S acts as a competitor of PTBLP-L.  相似文献   
1000.
Origin Recognition Complex (ORC) is a candidate initiator of chromosomal DNA replication in eukaryotes. We recently reported that cardiolipin inhibits the interaction of Origin Recognition Complex ORC with origin DNA, as is the case of DnaA, the initiator of chromosomal DNA replication in prokaryotes. We report here that another acidic phospholipid, phosphatidylglycerol (PG), also inhibits the interaction. Synthetic PG with only unsaturated fatty acids inhibits ORC-binding to origin DNA more strongly than PG with only saturated fatty acids. On the other hand, phosphatidylcholine (neutral phospholipid) does not affect the ORC-origin interaction, regardless of the presence of saturated or unsaturated fatty acids. These results suggest that an acidic moiety and unsaturated fatty acids are important factors for the inhibitory effect of phospholipids on ORC binding to origin DNA, as is the case for DnaA. The inhibitory effect of cardiolipin on ORC binding to origin DNA was more apparent at 30 degrees C than at 4 degrees C. Furthermore, chlorpromazine restored the ORC-origin interaction in the presence of cardiolipin. Since the presence of unsaturated fatty acids, low incubation temperatures, and the addition of chlorpromazine all decrease membrane fluidity, these results suggest that membrane fluidity is important for the inhibitory effect of acidic phospholipids on ORC-binding to origin DNA, as is the case for DnaA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号