首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1166篇
  免费   59篇
  1225篇
  2023年   6篇
  2022年   5篇
  2021年   8篇
  2020年   13篇
  2019年   9篇
  2018年   17篇
  2017年   12篇
  2016年   24篇
  2015年   39篇
  2014年   39篇
  2013年   104篇
  2012年   63篇
  2011年   73篇
  2010年   58篇
  2009年   43篇
  2008年   80篇
  2007年   59篇
  2006年   60篇
  2005年   68篇
  2004年   105篇
  2003年   86篇
  2002年   62篇
  2001年   10篇
  2000年   4篇
  1999年   10篇
  1998年   16篇
  1997年   9篇
  1996年   10篇
  1995年   8篇
  1994年   10篇
  1993年   11篇
  1992年   6篇
  1991年   5篇
  1990年   9篇
  1989年   4篇
  1988年   3篇
  1987年   4篇
  1986年   7篇
  1985年   9篇
  1984年   10篇
  1983年   6篇
  1982年   4篇
  1980年   5篇
  1979年   4篇
  1978年   4篇
  1977年   4篇
  1976年   6篇
  1974年   3篇
  1973年   3篇
  1970年   2篇
排序方式: 共有1225条查询结果,搜索用时 15 毫秒
21.
Tubular injury is one of the important determinants of progressive renal failure in diabetic nephropathy (DN), and TGF-β1 has been implicated in the pathogenesis of tubulointerstitial disease that characterizes proteinuric renal disease. The aim of this study was to identify novel therapeutic target molecules that play a role in the tubule damage of DN. We used an LC-MS/MS-based proteomic technique and human renal proximal epithelial cells (HRPTECs). Urine samples from Japanese patients with type 2 diabetes (n = 46) were used to quantify the candidate protein. Several proteins in HRPTECs in cultured media were observed to be driven by TGF-β1, one of which was 33-kDa IGFBP7, which is a member of IGFBP family. TGF-β1 up-regulated the expressions of IGFBP7 mRNA and protein in a dose- and time-dependent fashion via Smad2 and 4, but not MAPK pathways in HRPTECs. In addition, the knockdown of IGFBP7 restored the TGF-β1-induced epithelial to mesenchymal transition (EMT). In the immunohistochemical analysis, IGFBP7 was localized to the cytoplasm of tubular cells but not that of glomerular cells in diabetic kidney. Urinary IGFBP7 levels were significantly higher in the patients with macroalbuminuria and were correlated with age (r = 0.308, p = 0.037), eGFR (r = −0.376, p = 0.01), urinary β2-microglobulin (r = 0.385, p = 0.008), and urinary N-acetyl-beta-D-glucosaminidase (NAG) (r = 0.502, p = 0.000). A multivariate regression analysis identified urinary NAG and age as determinants associated with urinary IGFBP7 levels. In conclusion, our data suggest that TGF-β1 enhances IGFBP7 via Smad2/4 pathways, and that IGFBP7 might be involved in the TGF-β1-induced tubular injury in DN.  相似文献   
22.
Nondestructive evaluation of photosynthesis is a valuable tool in the field and laboratory. Delayed luminescence (DL) can reflect charge recombination through the backflow of electrons. However, DL detection has not yet been adapted for whole plants in Petri dishes. To compensate for differences in DL decay between sibling Arabidopsis plants grown under the same conditions, we developed a time-sequential double measurement method. Using this method, we examined the influence of photosynthetic electron flow inhibitors, and differences in the DL decay curves were categorized by considering the initial and late phases of the decay curves, as well as their intermediate slopes. The appearance of concavity and convexity in DL curves in Arabidopsis was different from unicellular algae, suggesting complexity in the photosynthetic machinery of higher plants. This detection method should be invaluable for evaluating photosynthetic defects in higher plants under sterile conditions without interrupting plant culture.  相似文献   
23.
Orthodontic tooth movement (OTM) is an adaptive biomechanical response of dentoalveolar components to orthodontic forces, in which remodeling of the alveolar bone occurs in response to changes in the surrounding mechanical environment. In this study, we developed a framework for OTM simulation by combining an image-based voxel finite element method, with a surface-tracking level set method using three-dimensional computer models. For a case study to demonstrate its capability of expressing clinical tooth movement, we observed displacement and rotation of the tooth under three types of force conditions. The simulation results demonstrate that the proposed simulation method has the potential to predict clinical OTM.  相似文献   
24.
Many species within Elmidae (Coleoptera: Byrrhoidea) have plastrons composed of flattened setae. However, some genera display fine plastrons on the epicuticle, called plastron hairs. In Japanese elmids, members of the genera Stenelmis, Ordobrevia, Nomuraelmis and Leptelmis bear ventral plastron hairs. Based on a maximum likelihood tree including most Japanese genera within Elmidae, we found that these genera are monophyletic and that plastron hairs are a derived character in Elmidae. We also found that the genus Graphelmis bears jigsaw puzzle‐like plastron scales with plastron hair‐like projections, and is sister to the group with plastron hairs.  相似文献   
25.
In the present study, the effect of constituting amino acid residue numbers of oligopeptide derivatives, which are candidate materials to construct molecular recognition sites, on chiral recognition ability was investigated. Chiral recognition sites were formed from oligopeptide derivatives, of which constituting amino acid residue numbers were three to six, by adopting an alternative molecular imprinting. It was made clear that the number four, in other words, the tetrapeptide derivative, is the best candidate material to form a chiral recognition site.  相似文献   
26.
Systemic acquired resistance (SAR) is a potent innate immunity system in plants that is induced through the salicylic acid-mediated pathway. N-cyanomethyl-2-chloroisonicotinamide (NCI) is able to induce a broad range of disease resistance in tobacco and rice and induces SAR marker gene expression without SA accumulation in tobacco. To clarify the detailed mode of action of NCI, we analyzed its ability to induce defense gene expression and resistance in Arabidopsis mutants that are defective in various defense signaling pathways. Wild-type Arabidopsis treated with NCI exhibited increased expression of several pathogenesis-related genes and enhanced resistance to the bacterial pathogen, Pseudomonas syringae pv. tomato DC3000. NCI induced disease resistance and PR gene expression in NahG transgenic plants, but not in the npr1 mutant. NCI could induce PR gene expression in the etr1-1, ein2-1 and jar1-1 mutants. Thus, NCI activates SAR, independently from ethylene and jasmonic acid, by stimulating the site between SA and NPR1.  相似文献   
27.
The adzuki bean beetle, Callosobruchus chinensis, is infected with three distinct lineages of endosymbiotic bacteria belonging to the genus Wolbachia, which were designated wBruCon, wBruOri, and wBruAus. In an attempt to understand the mechanisms underlying the infection with these three organisms, the spatiotemporal infection dynamics of the three Wolbachia strains was investigated in detail by using a quantitative PCR technique. During the development of C. chinensis, the wBruCon, wBruOri, and wBruAus infection levels consistently increased but the growth patterns were different. The levels of infection plateaued at the pupal stage at approximately 3 × 108, 2 × 108, and 5 × 107 wsp copy equivalents per insect for wBruCon, wBruOri, and wBruAus, respectively. At the whole-insect level, the population densities of the three Wolbachia types did not show remarkable differences between adult males and females. At the tissue level, however, the total densities and relative levels of the three Wolbachia types varied significantly when different tissues and organs were compared and when the same tissues derived from males and females were compared. The histological data obtained by in situ hybridization and electron microscopy were concordant with the results of quantitative PCR analyses. Based on the histological data and the peculiar Wolbachia composition commonly found in nurse tissues and oocytes, we suggest that the Wolbachia strains are vertically transmitted to oocytes not directly, but by way of nurse tissue. On the basis of our results, we discuss interactions among the three coinfecting Wolbachia types, reproductive strategies of Wolbachia, and factors involved in the different cytoplasmic incompatibility phenotypes.  相似文献   
28.
Novel inhibitors of fungal ATP-binding cassette transporters were obtained by screening compounds and crude extracts from marine-derived fungi and bacteria using disk diffusion assays of Saccharomyces cerevisiae strains overexpressing a variety of fungal multi-drug efflux pumps. The cyclodepsipeptides unnarmicin A and unnarmicin C were able to sensitize cells overexpressing azole drug pumps ScPdr5p, CaCdr1p, CgCdr1p, and CgPdh1p to sub-MIC concentrations of fluconazole without affecting the growth of CaCdr2p and CaMdr1p overexpressing cells. Unnarmicin A and unnarmicin C were potent inhibitors of rhodamine 6G efflux of CaCdr1p expressing cells with IC50 values of 3.61 and 5.65 μM, respectively. They inhibited the in vitro CaCdr1p ATPase activity at IC50 values of 0.495 and 0.688 μM, respectively. And most importantly, they were able to sensitize azole-resistant Candida albicans clinical isolates to fluconazole. Unnarmicin A and unnarmicin C are candidate efflux pump inhibitors with the potential to be used as adjuvants for antifungal chemotherapy.  相似文献   
29.
Ferredoxin (Fd) is the major iron-containing protein in photosynthetic organisms and is central to reductive metabolism in the chloroplast. The Chlamydomonas reinhardtii genome encodes six plant type [Fe2S2] ferredoxins, products of PETF, FDX2–FDX6. We performed the functional analysis of these ferredoxins by localizing Fd, Fdx2, Fdx3, and Fdx6 to the chloroplast by using isoform-specific antibodies and monitoring the pattern of gene expression by iron and copper nutrition, nitrogen source, and hydrogen peroxide stress. In addition, we also measured the midpoint redox potentials of Fd and Fdx2 and determined the kinetic parameters of their reactions with several ferredoxin-interacting proteins, namely nitrite reductase, Fd:NADP+ oxidoreductase, and Fd:thioredoxin reductase. We found that each of the FDX genes is differently regulated in response to changes in nutrient supply. Moreover, we show that Fdx2 (Em = −321 mV), whose expression is regulated by nitrate, is a more efficient electron donor to nitrite reductase relative to Fd. Overall, the results suggest that each ferredoxin isoform has substrate specificity and that the presence of multiple ferredoxin isoforms allows for the allocation of reducing power to specific metabolic pathways in the chloroplast under various growth conditions.Ferredoxins are small (∼11,000-kDa), soluble, iron-sulfur cluster-containing proteins with strongly negative redox potentials (−350 to −450 mV) that function as electron donors at reductive steps in various metabolic pathways (13). In photosynthetic organisms, the well studied ferredoxin (Fd4; the product of the PETF gene) is the most abundant iron-containing protein in the chloroplast and is central to the distribution of photosynthetically derived reductive power (4).The most well known Fd-dependent reaction is the transfer of electrons from photosystem I (PSI) to NADPH, catalyzed by Fd:NADP+ oxidoreductase (FNR). The NADPH produced by this reaction donates electrons to the only reductant-requiring step in the Calvin cycle and other steps in anabolic pathways that require NADPH as reductant. In addition, reduced Fd directly donates electrons to other metabolic pathways by interacting with various enzymes in the chloroplast. This includes Fd:thioredoxin reductase (FTR), which converts a light-driven electron signal into a thiol signal that is transmitted to thioredoxins (TRXs) present in the plastid as different types (or different isoforms). Once reduced, TRXs interact with specific disulfide bonds on target enzymes, modulating their activities (5). Other Fd targets include hydrogenase, which is responsible for hydrogen production in anaerobic conditions in green algae; glutamine-oxoglutarate amidotransferase in amino acid synthesis; nitrite and sulfite reductases in nitrate and sulfate assimilation, respectively; stearoyl-ACP Δ9-desaturase in fatty acid desaturation; and phycocyanobilin:Fd oxidoreductase in synthesis of phytochromobilin (6). Fd also functions in non-photosynthetic cells. Here, FNR catalyzes the reduction of Fd by NADPH produced in the oxidative pentose phosphate pathway, enabling Fd-dependent metabolism to occur in the dark (7, 8).The single-celled green alga, Chlamydomonas reinhardtii is an excellent reference organism for studying both metabolic adaptation to nutrient stress and photosynthesis (913). The Chlamydomonas genome encodes six highly related plant type ferredoxin genes (9). Until recently, only the major photosynthetic ferredoxin, Fd (encoded by PETF), which mediates electron transfer between PSI and FNR, had been characterized in detail (14).Many land plants are known to have multiple ferredoxins. Typically, they are differently localized on the basis of their function. Photosynthetic ferredoxins reduce NADP+ at a faster rate and are localized to the leaves, whereas non-photosynthetic ferredoxins are more efficiently reduced by NADPH and are localized to the roots. Arabidopsis thaliana has a total of six ferredoxin isoforms (15). Of these, two are photosynthetic and localized in the leaves. The most abundant, AtFd2, is involved in linear electron flow, and the less abundant (5% of the ferredoxin pool), AtFd1, has been implicated in cyclic electron flow (16). There is one non-photosynthetic ferredoxin located in the roots, AtFd3, which is nitrate-inducible. This protein has higher electron transfer activity with sulfite reductase in in vitro assays compared with other Arabidopsis ferredoxin isoforms, suggesting in vivo function of AtFd3 in nitrate and sulfate assimilation (15, 17). In addition, there is one evolutionarily distant ferredoxin, AtFd4, of unknown function with a more positive redox potential present in the leaves and two other proteins which are “ferredoxin-like” and uncharacterized (15). Zea mays has four ferredoxin isoforms, two photosynthetic and two non-photosynthetic (18). One of the non-photosynthetic isoforms is specifically induced by nitrite, suggestive of a role in nitrate metabolism (19). A cyanobacterium, Anabaena 7120, has two ferredoxins, vegetative and heterocyst type (by analogy to leaf and root types, respectively). The heterocyst type is present only in cells that have differentiated into nitrogen-fixing cells, indicating that this form may serve to transfer electrons to nitrogenase (20).We hypothesize that the presence of as many as six ferredoxin isoforms in a single-celled organism like C. reinhardtii allows for the differential regulation of each isoform and therefore the prioritization of reducing power toward certain metabolic pathways under changing environmental conditions. To test this hypothesis, expression of the genes (PETF and FDX2–FDX6) encoding the six ferredoxin isoforms in Chlamydomonas reinhardtii was monitored under various conditions in which well characterized ferredoxin-dependent enzymes are known to be expressed. In addition, we also analyzed the interaction of Fd and Fdx2 with several ferredoxin-interacting proteins, such as NiR, FNR, and FTR, and determined the kinetic parameters of the corresponding reactions.We found that each of the FDX genes is indeed differently regulated in response to changes in nutrient supply. In the case of FDX2 whose product is most similar to classical Fd, we suggest that it has specificity for nitrite reductase based on its pattern of expression and activity with nitrite reductase.  相似文献   
30.
In the continuing study directed toward the development of peroxisome proliferator-activated receptor gamma (hPPARγ) agonist, we attempted to improve the water solubility of our previously developed hPPARγ-selective agonist 3, which is insufficiently soluble for practical use, by employing two strategies: introducing substituents to reduce its molecular planarity and decreasing its hydrophobicity via replacement of the adamantyl group with a heteroaromatic ring. The first approach proved ineffective, but the second was productive. Here, we report the design and synthesis of a series of α-benzyl phenylpropanoic acid-type hPPARγ partial agonists with improved aqueous solubility. Among them, we selected (R)-7j, which activates hPPARγ to the extent of about 65% of the maximum observed with a full agonist, for further evaluation. The ligand-binding mode and the reason for the partial-agonistic activity are discussed based on X-ray-determined structure of the complex of hPPARγ ligand-binding domain (LBD) and (R)-7j with previously reported ligand-LDB structures. Preliminal apoptotic effect of (R)-7j against human scirrhous gastric cancer cell line OCUM-2MD3 is also described.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号