首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1343篇
  免费   61篇
  2023年   6篇
  2022年   6篇
  2021年   11篇
  2020年   14篇
  2019年   10篇
  2018年   19篇
  2017年   13篇
  2016年   26篇
  2015年   44篇
  2014年   42篇
  2013年   113篇
  2012年   70篇
  2011年   81篇
  2010年   65篇
  2009年   51篇
  2008年   84篇
  2007年   74篇
  2006年   68篇
  2005年   82篇
  2004年   114篇
  2003年   108篇
  2002年   81篇
  2001年   19篇
  2000年   8篇
  1999年   15篇
  1998年   15篇
  1997年   10篇
  1996年   11篇
  1995年   10篇
  1994年   12篇
  1993年   12篇
  1992年   5篇
  1991年   7篇
  1990年   9篇
  1989年   6篇
  1988年   9篇
  1987年   3篇
  1986年   3篇
  1985年   11篇
  1984年   10篇
  1983年   6篇
  1982年   4篇
  1980年   5篇
  1979年   3篇
  1978年   4篇
  1977年   4篇
  1976年   6篇
  1975年   4篇
  1973年   3篇
  1970年   2篇
排序方式: 共有1404条查询结果,搜索用时 15 毫秒
71.
Heme oxygenase (HO) catalyzes heme degradation by utilizing O(2) and reducing equivalents to produce biliverdin IX alpha, iron, and CO. To avoid product inhibition, the heme[bond]HO complex (heme[bond]HO) is structured to markedly increase its affinity for O(2) while suppressing its affinity for CO. We determined the crystal structures of rat ferrous heme[bond]HO and heme[bond]HO bound to CO, CN(-), and NO at 2.3, 1.8, 2.0, and 1.7 A resolution, respectively. The heme pocket of ferrous heme-HO has the same conformation as that of the previously determined ferric form, but no ligand is visible on the distal side of the ferrous heme. Fe[bond]CO and Fe[bond]CN(-) are tilted, whereas the Fe[bond]NO is bent. The structure of heme[bond]HO bound to NO is identical to that bound to N(3)(-), which is also bent as in the case of O(2). Notably, in the CO- and CN(-)-bound forms, the heme and its ligands shift toward the alpha-meso carbon, and the distal F-helix shifts in the opposite direction. These shifts allow CO or CN(-) to bind in a tilted fashion without a collision between the distal ligand and Gly139 O and cause disruption of one salt bridge between the heme and basic residue. The structural identity of the ferrous and ferric states of heme[bond]HO indicates that these shifts are not produced on reduction of heme iron. Neither such conformational changes nor a heme shift occurs on NO or N(3)(-) binding. Heme[bond]HO therefore recognizes CO and O(2) by their binding geometries. The marked reduction in the ratio of affinities of CO to O(2) for heme[bond]HO achieved by an increase in O(2) affinity [Migita, C. T., Matera, K. M., Ikeda-Saito, M., Olson, J. S., Fujii, H., Yoshimura, T., Zhou, H., and Yoshida, T. (1998) J. Biol. Chem. 273, 945-949] is explained by hydrogen bonding and polar interactions that are favorable for O(2) binding, as well as by characteristic structural changes in the CO-bound form.  相似文献   
72.
A central theme in prion protein research is the detection of the process that underlies the conformational transition from the normal cellular prion form (PrP(C)) to its pathogenic isoform (PrP(Sc)). Although the three-dimensional structures of monomeric and dimeric human prion protein (HuPrP) have been revealed by NMR spectroscopy and x-ray crystallography, the process underlying the conformational change from PrP(C) to PrP(Sc) and the dynamics and functions of PrP(C) remain unknown. The dimeric form is thought to play an important role in the conformational transition. In this study, we performed molecular dynamics (MD) simulations on monomeric and dimeric HuPrP at 300 K and 500 K for 10 ns to investigate the differences in the properties of the monomer and the dimer from the perspective of dynamic and structural behaviors. Simulations were also undertaken with Asp178Asn and acidic pH, which is known as a disease-associated factor. Our results indicate that the dynamics of the dimer and monomer were similar (e.g., denaturation of helices and elongation of the beta-sheet). However, additional secondary structure elements formed in the dimer might result in showing the differences in dynamics and properties between the monomer and dimer (e.g., the greater retention of dimeric than monomeric tertiary structure).  相似文献   
73.
Under the influence of the limb mesenchyme, Hoxa-11 is expressed in migrating and proliferating premyoblasts in the limb field and Hoxa-13 is induced in subdomains of congregated limb muscle masses. To evaluate the roles of Hoxa-11 and Hoxa-13 in myogenesis of the limb, we performed electroporation in ovo to force expression of these Hox genes in limb muscle precursors. In the presence of ectopic Hoxa-11, expression of MyoD was blocked transiently. In C2C12 myoblasts, transfection of Hoxa-11 also repressed the expression of endogenous MyoD. Forced expression of Hoxa-13 resulted in more pronounced repression of MyoD in both limb and C2C12 myoblasts. In contrast, targeted disruption of Hoxa-13 gave rise to enhanced expression of MyoD in the flexor carpi radialis muscle, a forearm muscle that normally expressed Hoxa-13. These results suggest that Hoxa-11 and Hoxa-13 are involved in the negative regulation of MyoD expression in limb muscle precursors.  相似文献   
74.
The genetic variation of sex ratio and sex allocation were examined in a series of half-sib analyses on the sex ratio of braconid parasitoid wasp Heterospilus prosopidis populations collected in Hawaii and Arizona. The mean threshold value and the range of the threshold for change in the sex of offspring in response to resource quality (host size) were determined. Estimates of the narrow-sense heritability (h2) of sex ratio at a specific host size ranged from 0.185 to 0.315, and those of the sex changing point (threshold value) ranged from 0.220 to 0.342. The coefficient of variation (CV(A)) of sex ratio was significantly larger than CV(A) of body weight. We discuss factors that maintained the significant additive genetic variation of sex ratio.  相似文献   
75.
CD98 is a multifunctional protein involved in amino acid transport and regulation of integrin-mediated cell adhesion. Herein, we demonstrated that CD98 stimulation by anti-CD98 antibodies induced CEA-CAM-1-mediated cell adhesion in BaF3 cells expressing CEA-CAM-1, and suggest that this might be responsible for compact clumping of F9 embryonic carcinoma cells by CD98 stimulation. CEA-CAM-1 was co-immunoprecipitated by anti-CD98 antibody. CD98 stimulation induced the translocation of cytoplasmic protein kinase Cdelta (PKCdelta) to the cell adhesion sites, and rottlerin that inhibited the PKCdelta translocation abolished the cell aggregation without affecting integrin activation. The results suggested that CD98 stimulation could activate CEA-CAM-1-mediated cell adhesion independently of integrins.  相似文献   
76.
Inhibitor 2 (I-2) is a ubiquitous regulator of type 1 protein phosphatase (PP1). Previous in vitro studies suggested that its inhibitory activity towards PP1 is regulated by phosphorylation at Thr72 by glycogen synthase kinase-3beta (GSK-3beta), and at Ser86, Ser120, and Ser121 by casein kinase 2 (CK2). Here we report that GSK-3beta expressed in COS-7 cells phosphorylates wild-type I-2 but not an I-2 mutant carrying a T to A substitution at residue 72, showing that GSK-3beta phosphorylates I-2 at T72 in vivo as well. Co-immunoprecipitation study demonstrated that HA-GSK-3beta and I-2-FLAG co-exist in a same complex in the intact cells, but they do not bind directly. It is noteworthy that co-expression of Myc-PP1C significantly increased co-precipitation of HA-GSK-3beta with I-2-FLAG, showing a complex formation of HA-GSK-3beta/Myc-PP1C / I-2-FLAG in vivo. Further studies using a GSK-3beta kinase-dead mutant and LiCl, an inhibitor of GSK-3beta, showed that the enzyme activity of GSK-3beta is required for co-precipitation. IP-Western study using several I-2 mutants substituted at phosphorylation sites (T72, S86, S120, and S121) suggested that phosphorylation of I-2 by CK2 is also involved in enhancement of association between GSK-3beta and I-2 in vivo. This study is the first demonstration that GSK-3beta associates with PP1C/I-2 complex and phosphorylates I-2 at T72 in the intact cells.  相似文献   
77.
First, using morpholino against lacZ, we demonstrate that the morpholino specifically suppresses the translation of the gene introduced exogenously into Ciona eggs. Second, using morpholino against an alkaline phosphatase gene, we show that the morpholino suppresses the translation of the endogenous gene as well. Third, using morpholino against beta-catenin gene, we confirm that the suppression by the morpholino can be rescued by injection of beta-catenin mRNA. All of these results indicate that morpholino act in Ciona embryos to specifically block the function of endogenous genes as well as exogenously introduced genes. genesis 30: 103--106, 2001.  相似文献   
78.
Because Helicobacter pylori (H. pylori) infection is a major cause of gastroduodenal diseases in humans, the eradication of H. pylori using antibiotics is very effective for the treatment of gastroduodenal diseases. However, it has recently been reported that resistance to these antibiotics is developing. In the present study, the antibacterial effect of a Kampo (traditional Japanese medicine) herbal formulation, Hochu-ekki-to (RET; Formula repletionis animalis et supletionis medii), against H. pylori was examined in vitro and in vivo. HET inhibited the growth of antibiotic-resistant strains of H. pylori as well as antibiotic-sensitive strains at a dose of 2.5 mg/ml in vitro. When 1,000 mg/kg of HET was administered orally to C57BL/6 mice for 7 days before or after inoculation with H. pylori, H. pylori in the stomach was significantly reduced in the HET-pre-treatment group compared with the control group. Furthermore, HET in combination with antibiotics completely eradicated the bacteria in mice. The expression of interferon (IFN)-gamma was induced in the gastric mucosa of the mice pre-treated with HET. There were no significant differences between the colonization of H. pylori in the control and HET treatment groups in IFN-gamma gene-deficient mice. These results suggest that the antibacterial effect of HET may be partly due to IFN-gamma induction, and that HET may be clinically useful for treatment of H. pylori infection.  相似文献   
79.
Clostridium perfringens alpha-toxin (370 residues) possesses hemolytic and lethal activities as well as the enzymatic activity of phospholipase C (PLC). In this study we examined the role of the C-domain (251-370 residues; CP251- 370) in biological activities of the toxin. The N-domain (1-250 residues; CP1- 250) of the alpha-toxin as well as the Bacillus cereus phospholipase C (BcPLC) possessed PLC activity, but did not bind to rabbit erythrocytes and lyse them. A hybrid protein (BC-CP251-370) consisting of BcPLC and CP251- 370 bound to the red cells and lysed them. Incubation of CP1-250 with CP251-370 completely complemented hemolytic and PLC activities. CP251-370 also conferred hemolytic activity on BcPLC. CP251-340 (251-340 residues) significantly stimulated PLC activity of CP1-250), but did not confer hemolytic activity on CP1-250. Kinetic analysis suggested that CP251-370 increased affinity toward the substrate of CP1-250. The results suggested that CP251-370 plays an important role in binding to erythrocytes and the hemolytic and enzymatic activities of CP1-250. Acrylodan-labeled CP251-370 variants (S263C and S365C) bound to liposomes and exhibited a marked blue shift, and in addition, an N,N'-dimethyl-N-(iodoacetyl)-N'-(7-nitrobenz-2-oxa-1,3-diazolyl)ethylene diamine (NBD)-labeled CP251-370 (S365C) variant also bound to liposomes and the fluorescence intensity significantly increased, suggesting movement of CP251-370 to a hydrophobic environment. These observations suggest that interaction of CP251-370 of alpha-toxin with fatty acyl residues of phosphatidylcholine plays an important role in the biological activities of CP1-250.  相似文献   
80.
To elucidate the function of protein disulfide isomerase (PDI), we screened for PDI-binding proteins in a bovine liver extract using affinity column chromatography. One of the binding proteins was identified by SDS-PAGE and N-terminal amino acid sequence analysis to be cyclophilin B (Cyp B). Use of the BIACORE system revealed that purified bovine Cyp B bound specifically to bovine PDI with a K(D) value of 1.19 x 10(-5) M. Interestingly, the binding affinity between PDI and Cyp B was strengthened by preincubation of the Cyp B with cyclosporin A (CsA), yielding a K(D) value of 3.67 x 10(-6) M. Although the interaction between PDI and Cyp B affected neither the isomerase activity of PDI nor the peptidyl-prolyl cis-trans isomerase activity of Cyp B, Cyp B increased the chaperone activity of PDI. However, the complex of Cyp B and CsA completely inhibited the chaperone activity of PDI. Thus, PDI and Cyp B appear to cooperate with each other to regulate the functional expression of proteins in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号