首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1172篇
  免费   54篇
  2023年   6篇
  2022年   5篇
  2021年   8篇
  2020年   13篇
  2019年   9篇
  2018年   17篇
  2017年   11篇
  2016年   22篇
  2015年   41篇
  2014年   39篇
  2013年   104篇
  2012年   63篇
  2011年   74篇
  2010年   60篇
  2009年   44篇
  2008年   82篇
  2007年   64篇
  2006年   62篇
  2005年   64篇
  2004年   105篇
  2003年   86篇
  2002年   60篇
  2001年   9篇
  2000年   7篇
  1999年   9篇
  1998年   16篇
  1997年   9篇
  1996年   11篇
  1995年   9篇
  1994年   10篇
  1993年   11篇
  1992年   4篇
  1991年   5篇
  1990年   8篇
  1989年   4篇
  1988年   3篇
  1987年   6篇
  1986年   3篇
  1985年   9篇
  1984年   9篇
  1983年   5篇
  1982年   4篇
  1980年   5篇
  1979年   3篇
  1978年   5篇
  1977年   4篇
  1976年   6篇
  1974年   2篇
  1973年   3篇
  1970年   2篇
排序方式: 共有1226条查询结果,搜索用时 15 毫秒
61.
A simple and sensitive spectrophotometric method combined with solid-phase extraction (SPE) for the simultaneous determination of sodium linear-dodecylbenzenesulfonate (DBS) and sodium dodecyl sulfate (SDS) is described. The C2 (ethyl group bonded silicagel) cartridge could be repeatedly used more than 500 times for SPE, and it enabled the anionic surfactants to be concentrated by 50-fold. The calibration graph for DBS was linear in the range from 1.6 x 10(-8) M to 5.0 x 10(-7) M and for SDS from 2.0 x 10(-9) M to 3.0 x 10(-7) M. The relative standard deviation (n=5) for 5.0 x 10(-7) M DBS was 3.1% and for 2.5 x 10(-7) M SDS was 1.7%. The proposed method was applied to the simultaneous determination of DBS and SDS in river-water samples.  相似文献   
62.
The metameric structure of the vertebrate trunk is generated by repeated formation of somites from the unsegmented presomitic mesoderm (PSM). We report the initial characterization of nine different mutants affecting segmentation that were isolated in a large-scale mutagenesis screen in Medaka (Oryzias latipes). Four mutants were identified that show a complete or partial absence of somites or somite boundaries. In addition, five mutations were found that cause fused somites or somites with irregular sizes and shapes. In situ hybridization analysis using specific markers involved in the segmentation clock and antero-posterior (A-P) polarity of somites revealed that the nine mutants can be compiled into two groups. In group 1, mutants exhibit defects in tailbud formation and PSM prepatterning, whereas A-P identity in the somites is defective in group 2 mutants. Three mutants (planlos, pll; schnelles ende, sne; samidare, sam) have characteristic phenotypes that are similar to those in zebrafish mutants affected in the Delta/Notch signaling pathway. The majority of mutants, however, exhibit somitic phenotypes distinct from those found in zebrafish, such as individually fused somites and irregular somite sizes. Thus, these Medaka mutants can be expected to provide clues to uncovering novel components essential for somitogenesis.  相似文献   
63.
In a previous paper, we reported that an imidazole derivative 1 exhibited a potent inhibitory activity of 20-HETE synthase (1; IC(50) value of 5.7 nM), but this compound also exhibited little selectivity for cytochrome P450s (CYPs). We examined some derivatives of imidazole 1 which had an amino group on the side chain, and found that a dimethylaminohexyloxy derivative (3g; IC(50) value of 8.8 nM) showed potent and selective inhibitory activity.  相似文献   
64.
A series of 3-substituted 1-azabicyclo[2.2.2]octanes was discovered as the alpha7 nicotinic acetylcholine (alpha7) receptor agonists. It was found that (+)-3-[2-(benzo[b]thiophen-2-yl)-2-oxoethyl]-1-azabicyclo[2.2.2]octane (+)-15b has potent agonistic activity for the alpha7 receptor.  相似文献   
65.
A comprehensive study on the dynamics of dissolved elements (Mg, Al, Si, P, Ca, V, Cr, Mn, Fe, Ni, Zn, As, Sr, Y, W, and U) in Lake Biwa was carried out using a clean technique. Lake water samples (n = 523) were collected from six stations in the North Basin and three stations in the South Basin. River water samples (n = 178) were collected from 14 major rivers flowing into the North Basin. Rainwater samples (n = 89) were collected at Otsu. The river water was enriched with Mn, Al, Fe, P, and Zn and the rainwater was enriched with Zn, Al, Fe, and Mn compared to North Basin water during winter mixing. The residence times of dissolved species were estimated on the basis of input through the rivers and rain. The residence times for Ca, Mg, and Sr were about 8 years, the same as that for water. Mn, Al, Fe, and Zn showed the shortest residence times (0.05–0.19 year). A budget calculation suggested that more than 60% of the input of dissolved Si, P, V, Cr, Mn, Fe, Ni, and Zn was scavenged and retained in the lake sediments and/or discharged as suspended particles.  相似文献   
66.
A series of novel 6-methylene-bridged uracil derivatives have been optimized for clinical use as the inhibitors of human thymidine phosphorylase (TP). We describe their synthesis and evaluation. Introduction of a guanidino or an amidino group enhanced the in vitro inhibitory activity of TP comparing with formerly reported inhibitor 1. Their selectivity for TP based on uridine phosphorylase inhibitory activity was also evaluated. Compound 2 (TPI) has been selected for clinical evaluation based on its strong TP inhibition and excellent modulation of 2'-deoxy-5-(trifluoromethyl)uridine (F(3)dThd) pharmacokinetics. As a result, TAS-102 (a combination of F(3)dThd and TPI) is currently in phase 1 clinical studies.  相似文献   
67.
In higher plants, photorespiratory Gly oxidation in leaf mitochondria yields ammonium in large amounts. Mitochondrial ammonium must somehow be recovered as glutamate in chloroplasts. As the first step in that recovery, we report glutamine synthetase (GS) activity in highly purified Arabidopsis thaliana mitochondria isolated from light-adapted leaf tissue. Leaf mitochondrial GS activity is further induced in response to either physiological CO(2) limitation or transient darkness. Historically, whether mitochondria are fully competent for oxidative phosphorylation in actively photorespiring leaves has remained uncertain. Here, we report that light-adapted, intact, leaf mitochondria supplied with Gly as sole energy source are fully competent for oxidative phosphorylation. Purified intact mitochondria efficiently use Gly oxidation (as sole energy, NH(3), and CO(2) source) to drive conversion of l-Orn to l-citrulline, an ATP-dependent process. An A. thaliana genome-wide search for nuclear gene(s) encoding mitochondrial GS activity yielded a single candidate, GLN2. Stably transgenic A. thaliana ecotype Columbia plants expressing a p35S::GLN2::green fluorescent protein (GFP) chimeric reporter were constructed. When observed by laser scanning confocal microscopy, leaf mesophyll and epidermal tissue of transgenic plants showed punctate GFP fluorescence that colocalized with mitochondria. In immunoblot experiments, a 41-kD chimeric GLN2::GFP protein was present in both leaf mitochondria and chloroplasts of these stably transgenic plants. Therefore, the GLN2 gene product, heretofore labeled plastidic GS-2, functions in both leaf mitochondria and chloroplasts to faciliate ammonium recovery during photorespiration.  相似文献   
68.
In the present study, we showed that SPA-1, a Rap1 GTPase-activating protein (GAP), was bound to a cytoskeleton-anchoring protein AF-6. SPA-1 and AF-6 were co-immunoprecipitated in the 293T cells transfected with both cDNAs as well as in normal thymocytes. In vitro binding studies using truncated fragments and their mutants suggested that SPA-1 was bound to the PDZ domain of AF-6 via probable internal PDZ ligand motif within the GAP-related domain. The motif was conserved among Rap1 GAPs, and it was shown that rapGAP I was bound to AF-6 comparably with SPA-1. RapV12 was also bound to AF-6 via the N-terminal domain, and SPA-1 and RapV12 were co-immunoprecipitated only in the presence of AF-6, indicating that they could be brought into close proximity via AF-6 in cells. Immunostaining analysis revealed that SPA-1 and RapV12 were co-localized with AF-6 at the cell attachment sites. In HeLa cells expressing SPA-1 in a tetracycline-regulatory manner, expression of AF-6 inhibited endogenous Rap1GTP and beta(1) integrin-mediated cell adhesion to fibronectin in SPA-1-induced conditions, whereas it affected neither of them in SPA-1-repressed conditions. These results suggested that AF-6 could control integrin-mediated cell adhesion by regulating Rap1 activation through the recruitment of both SPA-1 and Rap1GTP via distinct domains.  相似文献   
69.
Heme oxygenase (HO) catalyzes heme degradation by utilizing O(2) and reducing equivalents to produce biliverdin IX alpha, iron, and CO. To avoid product inhibition, the heme[bond]HO complex (heme[bond]HO) is structured to markedly increase its affinity for O(2) while suppressing its affinity for CO. We determined the crystal structures of rat ferrous heme[bond]HO and heme[bond]HO bound to CO, CN(-), and NO at 2.3, 1.8, 2.0, and 1.7 A resolution, respectively. The heme pocket of ferrous heme-HO has the same conformation as that of the previously determined ferric form, but no ligand is visible on the distal side of the ferrous heme. Fe[bond]CO and Fe[bond]CN(-) are tilted, whereas the Fe[bond]NO is bent. The structure of heme[bond]HO bound to NO is identical to that bound to N(3)(-), which is also bent as in the case of O(2). Notably, in the CO- and CN(-)-bound forms, the heme and its ligands shift toward the alpha-meso carbon, and the distal F-helix shifts in the opposite direction. These shifts allow CO or CN(-) to bind in a tilted fashion without a collision between the distal ligand and Gly139 O and cause disruption of one salt bridge between the heme and basic residue. The structural identity of the ferrous and ferric states of heme[bond]HO indicates that these shifts are not produced on reduction of heme iron. Neither such conformational changes nor a heme shift occurs on NO or N(3)(-) binding. Heme[bond]HO therefore recognizes CO and O(2) by their binding geometries. The marked reduction in the ratio of affinities of CO to O(2) for heme[bond]HO achieved by an increase in O(2) affinity [Migita, C. T., Matera, K. M., Ikeda-Saito, M., Olson, J. S., Fujii, H., Yoshimura, T., Zhou, H., and Yoshida, T. (1998) J. Biol. Chem. 273, 945-949] is explained by hydrogen bonding and polar interactions that are favorable for O(2) binding, as well as by characteristic structural changes in the CO-bound form.  相似文献   
70.
A central theme in prion protein research is the detection of the process that underlies the conformational transition from the normal cellular prion form (PrP(C)) to its pathogenic isoform (PrP(Sc)). Although the three-dimensional structures of monomeric and dimeric human prion protein (HuPrP) have been revealed by NMR spectroscopy and x-ray crystallography, the process underlying the conformational change from PrP(C) to PrP(Sc) and the dynamics and functions of PrP(C) remain unknown. The dimeric form is thought to play an important role in the conformational transition. In this study, we performed molecular dynamics (MD) simulations on monomeric and dimeric HuPrP at 300 K and 500 K for 10 ns to investigate the differences in the properties of the monomer and the dimer from the perspective of dynamic and structural behaviors. Simulations were also undertaken with Asp178Asn and acidic pH, which is known as a disease-associated factor. Our results indicate that the dynamics of the dimer and monomer were similar (e.g., denaturation of helices and elongation of the beta-sheet). However, additional secondary structure elements formed in the dimer might result in showing the differences in dynamics and properties between the monomer and dimer (e.g., the greater retention of dimeric than monomeric tertiary structure).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号