首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4527篇
  免费   262篇
  国内免费   3篇
  4792篇
  2023年   17篇
  2022年   32篇
  2021年   47篇
  2020年   36篇
  2019年   50篇
  2018年   78篇
  2017年   77篇
  2016年   91篇
  2015年   170篇
  2014年   201篇
  2013年   298篇
  2012年   282篇
  2011年   338篇
  2010年   191篇
  2009年   158篇
  2008年   290篇
  2007年   311篇
  2006年   284篇
  2005年   309篇
  2004年   256篇
  2003年   264篇
  2002年   244篇
  2001年   47篇
  2000年   33篇
  1999年   60篇
  1998年   68篇
  1997年   45篇
  1996年   60篇
  1995年   48篇
  1994年   30篇
  1993年   39篇
  1992年   36篇
  1991年   17篇
  1990年   23篇
  1989年   31篇
  1988年   16篇
  1987年   23篇
  1986年   19篇
  1985年   20篇
  1984年   28篇
  1983年   20篇
  1982年   25篇
  1981年   14篇
  1980年   19篇
  1979年   11篇
  1978年   6篇
  1977年   4篇
  1976年   6篇
  1974年   3篇
  1973年   4篇
排序方式: 共有4792条查询结果,搜索用时 0 毫秒
101.
Reports indicate that leaf onset (leaf flush) of deciduous trees in cool‐temperate ecosystems is occurring earlier in the spring in response to global warming. In this study, we created two types of phenology models, one driven only by warmth (spring warming [SW] model) and another driven by both warmth and winter chilling (parallel chill [PC] model), to predict such phenomena in the Japanese Islands at high spatial resolution (500 m). We calibrated these models using leaf onset dates derived from satellite data (Terra/MODIS) and in situ temperature data derived from a dense network of ground stations Automated Meteorological Data Acquisition System. We ran the model using future climate predictions created by the Japanese Meteorological Agency's MRI‐AGCM3.1S model. In comparison to the first decade of the 2000s, our results predict that the date of leaf onset in the 2030s will advance by an average of 12 days under the SW model and 7 days under the PC model throughout the study area. The date of onset in the 2090s will advance by 26 days under the SW model and by 15 days under the PC model. The greatest impact will occur on Hokkaido (the northernmost island) and in the central mountains.  相似文献   
102.
103.
Despite the presence of β-1,2-glucan in nature, few β-1,2-glucan degrading enzymes have been reported to date. Recently, the Lin1839 protein from Listeria innocua was identified as a 1,2-β-oligoglucan phosphorylase. Since the adjacent lin1840 gene in the gene cluster encodes a putative glycoside hydrolase family 3 β-glucosidase, we hypothesized that Lin1840 is also involved in β-1,2-glucan dissimilation. Here we report the functional and structural analysis of Lin1840. A recombinant Lin1840 protein (Lin1840r) showed the highest hydrolytic activity toward sophorose (Glc-β-1,2-Glc) among β-1,2-glucooligosaccharides, suggesting that Lin1840 is a β-glucosidase involved in sophorose degradation. The enzyme also rapidly hydrolyzed laminaribiose (β-1,3), but not cellobiose (β-1,4) or gentiobiose (β-1,6) among β-linked gluco-disaccharides. We determined the crystal structures of Lin1840r in complexes with sophorose and laminaribiose as productive binding forms. In these structures, Arg572 forms many hydrogen bonds with sophorose and laminaribiose at subsite +1, which seems to be a key factor for substrate selectivity. The opposite side of subsite +1 from Arg572 is connected to a large empty space appearing to be subsite +2 for the binding of sophorotriose (Glc-β-1,2-Glc-β-1,2-Glc) in spite of the higher Km value for sophorotriose than that for sophorose. The conformations of sophorose and laminaribiose are almost the same on the Arg572 side but differ on the subsite +2 side that provides no interaction with a substrate. Therefore, Lin1840r is unable to distinguish between sophorose and laminaribiose as substrates. These results provide the first mechanistic insights into β-1,2-glucooligosaccharide recognition by β-glucosidase.  相似文献   
104.
105.
106.
Male sterility induced by low temperatures (LTs) during the reproductive stage is a major constraint for temperate zone rice. To detect physiological quantitative trait loci (QTLs), we modeled genotypic variation in the physiological processes involved in low temperature spikelet sterility on the basis of anther length (AL), a proxy for microspore and pollen grain number per anther. The model accounted for 83% of the genotypic variation in potential AL at normal temperature and the ability to maintain AL at LT. We tested the model on 208 recombinant inbred lines of cold‐tolerant ‘Tohoku‐PL3’ (PL3) × cold‐sensitive ‘Akihikari’ (AH) for 2 years. QTLs for spikelet fertility (FRT) at LT were detected on chromosomes 5 (QTL for Cold Tolerance at Reproductive stage, qCTR5) and 12 (qCTR12). qCTR12 was annotated with the ability to maintain AL under LTs. qCTR5 was in a region shared with QTLs for culm length and heading date. Genome‐wide expression analysis showed 798 genes differentially expressed in the spikelets between the parents at LTs. Of these, 12 were near qCTR5 and 23 were near qCTR12. Gene expression analysis confirmed two candidate genes for qCTR5 (O‐methyltransferase ZRP4, Os05g0515600; beta‐1,3‐glucanase‐like protein, Os05g0535100) and one for qCTR12 (conserved hypothetical protein, Os12g0550600). Nucleotide polymorphisms (21 deletions, 2 insertions and 10 single nucleotide polymorphisms) in PL3 were found near the candidate conserved hypothetical protein (Os12g0550600) and upstream in PL3, but not in AH. Haplotype analysis revealed that this gene came from ‘Kuchum’. The combination of mapping physiological QTLs with gene expression analysis can be extended to identify other genes for abiotic stress response in cereals.  相似文献   
107.
Because DNA double-strand breaks (DSBs) are one of the most cytotoxic DNA lesions and often cause genomic instability, precise repair of DSBs is vital for the maintenance of genomic stability. Xrs2/Nbs1 is a multi-functional regulatory subunit of the Mre11-Rad50-Xrs2/Nbs1 (MRX/N) complex, and its function is critical for the primary step of DSB repair, whether by homologous recombination (HR) or non-homologous end joining. In human NBS1, mutations result truncation of the N-terminus region, which contains a forkhead-associated (FHA) domain, cause Nijmegen breakage syndrome. Here we show that the Xrs2 FHA domain of budding yeast is required both to suppress the imprecise repair of DSBs and to promote the robust activation of Tel1 in the DNA damage response pathway. The role of the Xrs2 FHA domain in Tel1 activation was independent of the Tel1-binding activity of the Xrs2 C terminus, which mediates Tel1 recruitment to DSB ends. Both the Xrs2 FHA domain and Tel1 were required for the timely removal of the Ku complex from DSB ends, which correlates with a reduced frequency of imprecise end-joining. Thus, the Xrs2 FHA domain and Tel1 kinase work in a coordinated manner to maintain DSB repair fidelity.  相似文献   
108.
Over 200 components with molecular mass ranging mainly from 400 to 4000 Da were characterized from the venom of the vermivorous cone snail Conus fulgetrum that inhabit Egyptian Red Sea. One major component having a molecular mass of 2946 Da was purified by HPLC, and its primary structure was determined by a combination of Edman degradation and MS/MS analysis.  相似文献   
109.
Karyopherin-dependent molecular transport through the nuclear pore complex is maintained by constant recycling pathways of karyopherins coupled with the Ran-dependent cargo catch-and-release mechanism. Although many studies have revealed the bidirectional dynamics of karyopherins, the entire kinetics of the steady-state dynamics of karyopherin and cargo is still not fully understood. In this study, we used fluorescence recovery after photobleaching and fluorescence loss in photobleaching on live cells to provide convincing in vivo proof that karyopherin-mediated nucleocytoplasmic transport of cargoes is bidirectional. Continuous photobleaching of the cytoplasm of live cells expressing NLS cargoes led to progressive decrease of nuclear fluorescence signals. In addition, experimentally obtained kinetic parameters of karyopherin complexes were used to establish a kinetic model to explain the entire cargo import and export transport cycles facilitated by importin β. The results strongly indicate that constant shuttling of karyopherins, either free or bound to cargo, ensures proper balancing of nucleocytoplasmic distribution of cargoes and establishes effective regulation of cargo dynamics by RanGTP.  相似文献   
110.
The polymerization of proteins can create newly active and large bio‐macromolecular assemblies that exhibit unique functionalities depending on the properties of the building block proteins and the protein units in polymers. Herein, the first enzymatic polymerization of horseradish peroxidase (HRP) is reported. Recombinant HRPs fused with a tyrosine‐tag (Y‐tag) through a flexible linker at the N‐ and/or Ctermini are expressed in silkworm, Bombyx mori. Trametes sp. laccase (TL) is used to activate the tyrosine of Y‐tagged HRPs with molecular O2 to form a tyrosyl‐free radical, which initiates the tyrosine coupling reaction between the HRP units. A covalent dityrosine linkage is also formed through a HRP‐catalyzed self‐crosslinking reaction in the presence of H2O2. The addition of H2O2 in the self‐polymerization of Y‐tagged HRPs results in lower activity of the HRP polymers, whereas TL provides site‐selectivity, mild reaction conditions and maintains the activity of the polymeric products. The cocrosslinking of Y‐tagged HRPs and HRP‐protein G (Y‐HRP‐pG) units catalyzed by TL shows a higher signal in enzyme‐linked immunosorbent assay (ELISA) than the genetically pG‐fused HRP, Y‐HRP‐pG, and its polymers. This new enzymatic polymerization of HRP promises to provide highly active and functionalized polymers for biomedical applications and diagnostics probes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号