首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6823篇
  免费   412篇
  国内免费   3篇
  2023年   20篇
  2022年   40篇
  2021年   71篇
  2020年   49篇
  2019年   72篇
  2018年   97篇
  2017年   103篇
  2016年   120篇
  2015年   218篇
  2014年   266篇
  2013年   488篇
  2012年   379篇
  2011年   446篇
  2010年   242篇
  2009年   219篇
  2008年   383篇
  2007年   420篇
  2006年   396篇
  2005年   402篇
  2004年   347篇
  2003年   353篇
  2002年   325篇
  2001年   116篇
  2000年   100篇
  1999年   135篇
  1998年   91篇
  1997年   64篇
  1996年   73篇
  1995年   58篇
  1994年   50篇
  1993年   56篇
  1992年   90篇
  1991年   81篇
  1990年   62篇
  1989年   70篇
  1988年   68篇
  1987年   55篇
  1986年   63篇
  1985年   60篇
  1984年   49篇
  1983年   51篇
  1982年   41篇
  1981年   34篇
  1980年   39篇
  1979年   39篇
  1978年   21篇
  1977年   24篇
  1975年   17篇
  1974年   27篇
  1973年   26篇
排序方式: 共有7238条查询结果,搜索用时 15 毫秒
991.
Abundant evidences demonstrate that deuterium oxide (D2O) modulates various secretory activities, but specific mechanisms remain unclear. Using AtT20 cells, we examined effects of D2O on physiological processes underlying β-endorphin release. Immunofluorescent confocal microscopy demonstrated that 90% D2O buffer increased the amount of actin filament in cell somas and decreased it in cell processes, whereas β-tubulin was not affected. Ca2+ imaging demonstrated that high-K+-induced Ca2+ influx was not affected during D2O treatment, but was completely inhibited upon D2O washout. The H2O/D2O replacement in internal solutions of patch electrodes reduced Ca2+ currents evoked by depolarizing voltage steps, whereas additional extracellular H2O/D2O replacement recovered the currents, suggesting that D2O gradient across plasma membrane is critical for Ca2+ channel kinetics. Radioimmunoassay of high-K+-induced β-endorphin release demonstrated an increase during D2O treatment and a decrease upon D2O washout. These results demonstrate that the H2O-to-D2O-induced increase in β-endorphin release corresponded with the redistribution of actin, and the D2O-to-H2O-induced decrease in β-endorphin release corresponded with the inhibition of voltage-sensitive Ca2+ channels. The computer modeling suggests that the differences in the zero-point vibrational energy between protonated and deuterated amino acids produce an asymmetric distribution of these amino acids upon D2O washout and this causes the dysfunction of Ca2+ channels.  相似文献   
992.
993.
In the bright fields, stomata of the plants are fully opened to raise the transpiration rate and CO2 uptake required for photosynthesis. Stomatal opening is driven by the activation of plasma membrane H+-ATPase and K+in channels, and the Ca2+-dependent inactivation and blockage of both components were supposed to be inevitable function to regulate the stomatal aperture. Although, it is still obscure how these activities are regulated at the open state. Application of an amphipathic membrane creator, trinitrophenol (TNP), instantly generates the convex curvature in the plasma membrane, which occurs in the phases of stomatal opening and closure. TNP surely activates mechanosensitive Ca2+-permeable channels and attenuates the promotion of stomatal opening, but does not inhibit and promote stomatal closure. These results suggest that activation of mechanosensitive Ca2+-permeable channels regulates the opening phase of stomata in plants.  相似文献   
994.
In order to address whether galectin-3 in the sera and fine needle aspirates serve as a diagnostic marker distinguishing between benign and malignant thyroid nodules, we developed an enzyme-linked immunosorbent assay. We quantified galectin-3 in fine needle aspirates from a series of 118 patients with thyroid nodules and serum galectin-3 from another series of 46 patients, which were compared with final histology after thyroidectomy. Relative galectin-3 value (ng/mg), defined as galectin-3 concentration (ng/ml) divided by total protein concentration (mg/ml) in fine needle aspirates, was significantly higher in papillary carcinoma than in the other thyroid entities. There was no significant difference in serum galectin-3 level among patients with thyroid nodules and healthy individuals. Accordingly, relative galectin-3 value allows a definitive diagnosis of papillary carcinoma independent of cellular morphology, whereas serum galectin-3 does not serve as a marker for papillary carcinoma.  相似文献   
995.
Bcl11b is a haploinsufficient tumor suppressor gene and expressed in many tissues such as thymus, brain and skin. Irradiated Bcl11b+/− heterozygous mice mostly develop thymic lymphomas, but the preference of Bcl11b inactivation for thymic lymphomas remains to be addressed. We produced Bcl11b+/− heterozygous and Bcl11b wild-type mice of p53+/− background and compared their incidence of γ-ray induced thymic lymphomas. Majority of the tumors in p53+/− mice were skin tumors, and only 5 (36%) of the 14 tumors were thymic lymphomas. In contrast, Bcl11b+/−p53+/− doubly heterozygous mice developed thymic lymphomas at the frequency of 27 (79%) of the 34 tumors developed (P = 0.008). This indicates the preference of Bcl11b impairment for thymic lymphoma development. We also analyzed loss of the wild-type alleles in the 27 lymphomas, a predicted consequence given by γ-irradiation. However, the loss frequency was low, only six (22%) for Bcl11b and five (19%) for p53. The frequencies did not differ from those of spontaneously developed thymic lymphomas in the doubly heterozygous mice, though the latency of lymphoma development markedly differed between them. This suggests that the main contribution of irradiation at least in those mice is not for the tumor initiation by inducing allelic losses but probably for the promotion of thymic lymphoma development.  相似文献   
996.
Kono M  Goletz PW  Crouch RK 《Biochemistry》2008,47(28):7567-7571
Rhodopsin is the photosensitive pigment in the rod photoreceptor cell. Upon absorption of a photon, the covalently bound 11- cis-retinal isomerizes to the all- trans form, enabling rhodopsin to activate transducin, its G protein. All -trans-retinal is then released from the protein and reduced to all -trans-retinol. It is subsequently transported to the retinal pigment epithelium where it is converted to 11- cis-retinol and oxidized to 11- cis-retinal before it is transported back to the photoreceptor to regenerate rhodopsin and complete the visual cycle. In this study, we have measured the effects of all -trans- and 11- cis-retinals and -retinols on the opsin's ability to activate transducin to ascertain their potentials for activating the signaling cascade. Only 11- cis-retinal acts as an inverse agonist to the opsin. All -trans-retinal, all -trans-retinol, and 11- cis-retinol are all agonists with all -trans-retinal being the most potent agonist and all -trans-retinol being the least potent. Taken as a whole, our study is consistent with the hypothesis that the steps in the visual cycle are optimized such that the rod can serve as a highly sensitive dim light receptor. All -trans-retinal is immediately reduced in the photoreceptor to prevent back reactions and to weaken its effectiveness as an agonist before it is transported out of the cell; oxidation of 11- cis-retinol occurs in the retinal pigment epithelium and not the rod photoreceptor cell because 11- cis-retinol can act as an agonist and activate the signaling cascade if it were to bind an opsin, effectively adapting the cell to light.  相似文献   
997.
In the thermophilic cytochrome P450 from the thermoacidophilic crenarchaeon Sulfolobus tokodaii strain 7 (P450st), a phenylalanine residue at position 310 and an alanine residue at position 320 are located close to the heme thiolate ligand, Cys317. Single site-directed mutants F310A and A320Q and double mutant F310A/A320Q have been constructed. All mutant enzymes as well as wild-type (WT) P450st were expressed at high levels. The substitution of F310 with Ala and of A320 with Gln induced shifts in redox potential and blue shifts in Soret absorption of ferrous-CO forms, while spectral characterization showed that in the resting state, the mutants almost retained the structural integrity of the active site. The redox potential of the heme varied as follows: -481 mV (WT), -477 mV (A320Q), -453 mV (F310A), and -450 mV (F310A/A320Q). The trend in the Soret band of the ferrous-CO form was as follows: 450 nm (WT) < 449 nm (A320Q) < 446 nm (F310A) < 444 nm (F310A/A320Q). These results established that the reduction potential and electron density on the heme iron are modulated by the Phe310 and Ala320 residues in P450st. The electron density on the heme decreases in the following order: WT > A320Q > F310A > F310A/A320Q. The electron density on the heme iron infers an essential role in P450 activity. The decrease in electron density interferes with the formation of a high-valent oxo-ferryl species called Compound I. However, steady-state turnover rates of styrene epoxidation with H2O2 show the following trend: WT approximately equal to A320Q < F310A approximately equal to F310A/A320Q. The shunt pathway which can provide the two electrons and oxygen required for a P450 reaction instead of NAD(P)H and dioxygen can rule out the first and second heme reduction in the catalytic process. Because the electron density on the heme iron might be deeply involved in the k cat values in this system, the intermediate Compound 0 which is the precursor species of Compound I mainly appears to participate dominantly in epoxidation with H2O2.  相似文献   
998.
Gene vmrA, cloned from Vibrio parahaemolyticus, made Escherichia coli resistant to 4',6-diamino-2-phenylindol, tetraphenylphosphonium chloride, acriflavine, and ethidium bromide. VmrA belongs to the DinF branch of MATE family efflux transporters. VmrA catalyzed acriflavine efflux and showed Na(+)/drug transporter activity because the addition of tetraphenylphosphonium to Na(+)-loaded cells caused Na(+) efflux.  相似文献   
999.
Poly(ADP-ribose) polymerase (PARP) may play important roles in nuclear events such as cell cycle, cell proliferation, and maintenance of chromosomal stability. However, the exact biological role played by PARP or how PARP is involved in these cellular functions is still unclear. To elucidate the biological functions of PARP in vivo, we have constructed transgenic flies that overexpress Drosophila PARP in the developing eye primordia. These flies showed mild roughening of the normally smooth ommatidial lattice and tissue polarity disruption caused by improper rotation and chirality of the ommatidia. To clarify how this phenotypical change was induced, here we analyzed transgenic flies overexpressing PARP in the developing eye, embryo, and adult in detail. PARP mRNA level and the phenotype were enhanced in flies carrying more copies of the transgene. Developing eyes from third instar larvae were analyzed by using the neural cell marker to examine the involvement of PARP in cell fate. Morphological disorder of non-neuronal accessory cells was observed in PARP transgenic flies. Interestingly, overexpression of PARP did not interfere with the cell cycle or apoptosis, but it did disrupt the organization of cytoskeletal F-actin, resulting in aberrant cell and tissue morphology. Furthermore, heat-induced PARP expression disrupted organization of cytoskeletal F-actin in embryos and tissue polarity in adult flies. Because these phenotypes closely resembled mutants or transgenic flies of the tissue polarity genes, genetic interaction of PARP with known tissue polarity genes was examined. Transgenic flies expressing either PARP or RhoA GTPase in the eye were crossed, and co-expression of PARP suppressed the effect of RhoA GTPase. Our results indicate that PARP may play a role in cytoskeletal or cytoplasmic events in developmental processes of Drosophila.  相似文献   
1000.
Oncogenic Ras and activated forms of the Ras-related protein TC21/R-Ras2 share similar abilities to alter cell proliferation. However, in contrast to Ras, we found previously that TC21 fails to activate the Raf-1 serine/threonine kinase. Thus, TC21 must utilize non-Raf effectors to regulate cell function. In this study, we determined that TC21 interacts strongly with some (RalGDS, RGL, RGL2/Rlf, AF6, and the phosphatidylinositol 3-kinase (PI3K) catalytic subunit p110delta), and weakly with other Ras small middle dotGTP-binding proteins. In addition, library screening identified novel TC21-interacting proteins. We also determined that TC21, similar to Ras, mediates activation of phospholipase Cepsilon. We then examined if RalGDS, a RalA guanine nucleotide exchange factor, or PI3K are effectors for TC21-mediated signaling and cell proliferation in murine fibroblasts. We found that overexpression of full-length RalGDS reduced the focus forming activity of activated TC21. Furthermore, expression of activated Ras, but not TC21, enhanced GTP loading on RalA. In fact, TC21 attenuated insulin-stimulated RalA small middle dotGTP formation. In contrast, like Ras, expression of activated TC21 resulted in membrane translocation and an increase in the PI3K-dependent phosphorylation of Akt, and inhibition of PI3K activity interfered with TC21 focus formation. Finally, unlike Ras, TC21 did not activate the Rac small GTPase, indicating that Ras may not activate Rac by PI3K. Taken together, these results suggest that PI3K, but not RalGDS, is an important mediator of cell proliferation by TC21.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号