首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5288篇
  免费   302篇
  国内免费   3篇
  5593篇
  2023年   17篇
  2022年   37篇
  2021年   55篇
  2020年   38篇
  2019年   53篇
  2018年   84篇
  2017年   91篇
  2016年   104篇
  2015年   177篇
  2014年   224篇
  2013年   332篇
  2012年   313篇
  2011年   365篇
  2010年   222篇
  2009年   178篇
  2008年   311篇
  2007年   354篇
  2006年   321篇
  2005年   323篇
  2004年   295篇
  2003年   309篇
  2002年   278篇
  2001年   88篇
  2000年   65篇
  1999年   84篇
  1998年   76篇
  1997年   52篇
  1996年   69篇
  1995年   54篇
  1994年   38篇
  1993年   49篇
  1992年   57篇
  1991年   37篇
  1990年   38篇
  1989年   47篇
  1988年   36篇
  1987年   33篇
  1986年   39篇
  1985年   34篇
  1984年   34篇
  1983年   26篇
  1982年   31篇
  1981年   16篇
  1980年   23篇
  1979年   16篇
  1978年   7篇
  1976年   13篇
  1975年   9篇
  1974年   10篇
  1973年   6篇
排序方式: 共有5593条查询结果,搜索用时 15 毫秒
991.
Because endothelial nitric oxide synthase (eNOS) has anti-inflammatory and anti-arteriosclerotic functions, it has been recognized as one of the key molecules essential for the homeostatic control of blood vessels other than relaxation of vascular tone. Here, we examined whether telmisartan modulates eNOS function through its pleiotropic effect. Administration of telmisartan to mice significantly increased the phosphorylation level of eNOS (Ser1177) in the aortic endothelium, but administration of valsartan had no effect. Similarly, telmisartan treatment of human umbilical vein endothelial cells significantly increased the phosphorylation levels of AMP-activated protein kinase (Thr172) and eNOS and the concentration of intracellular guanosine 3′,5′-cyclic monophosphate (cGMP). Furthermore, pretreatment with a p38 mitogen-activated protein kinase (p38 MAPK) inhibitor suppressed the increased phosphorylation level of eNOS and intracellular cGMP concentration. These data show that telmisartan increases eNOS activity through Ser1177 phosphorylation in vascular endothelial cells mainly via p38 MAPK signaling.  相似文献   
992.

Background

We previously reported the role of IL-6 in a murine model of cancer cachexia and currently documented a patient in whom tocilizumab, anti-IL-6 receptor antibody, dramatically improved cachexia induced by IL-6 over-expressing lung cancer. Despite this potential to alleviate cancer cachexia, tocilizumab has not been approved for this clinical use. Therefore, preceding our planned clinical trial of tocilizumab, we designed the two studies described here to evaluate the levels of IL-6 in patients with lung cancer and the effect of tocilizumab in a murine model of human cancer cachexia.

Methods

First, we measured serum IL-6 levels in patients with lung cancer and analyzed its association with cachexia and survival. Next, we examined the effect of a rodent analog of tocilizumab (MR16-1) in the experimental cachexia model.

Results

Serum IL-6 levels were higher in patients with cachexia than those without cachexia. In patients with chemotherapy-resistant lung cancer, a high IL-6 serum level correlated strongly with survival, and the cut-off level for affecting their prognosis was 21 pg/mL. Meanwhile, transplantation of IL-6-expressing Lewis Lung Carcinoma cells caused cachexia in mice, which then received either MR16-1 or 0.9% saline. Tumor growth was similar in both groups; however, the MR16-1 group lost less weight, maintained better food and water intake and had milder cachectic features in blood. MR16-1 also prolonged the survival of LLC-IL6 transplanted mice (36.6 vs. 28.5 days, p = 0.016).

Conclusion

Our clinical and experimental studies revealed that serum IL-6 is a surrogate marker for evaluating cachexia and the prognosis of patients with chemotherapy resistant metastatic lung cancer and that tocilizumab has the potential of improving prognosis and ameliorating the cachexia that so devastates their quality of life. This outcome greatly encourages our clinical trials to evaluate the safety and efficacy of tocilizumab treatment for patients with increased serum IL-6.  相似文献   
993.
Neo-fermented buckwheat sprouts (neo-FBS) contain angiotensin-converting enzyme (ACE) inhibitors and vasodilators with blood pressure-lowering (BPL) properties in spontaneously hypertensive rats (SHRs). In this study, we investigated antihypertensive mechanisms of six BPL peptides isolated from neo-FBS (FBPs) by a vasorelaxation assay and conventional in vitro, in vivo, and a new ex vivo ACE inhibitory assays. Some FBPs demonstrated moderate endothelium-dependent vasorelaxation in SHR thoracic aorta and all FBPs mildly inhibited ACE in vitro. Orally administered FBPs strongly inhibited ACE in SHR tissues. To investigate detailed ACE-inhibitory mechanism of FBPs in living body tissues, we performed the ex vivo assay by using endothelium-denuded thoracic aorta rings isolated from SHRs, which demonstrated that FBPs at low concentration effectively inhibited ACE in thoracic aorta tissue and suppressed angiotensin II-mediated vasoconstriction directly associated with BPL. These results indicate that the main BPL mechanism of FBP was ACE inhibition in living body tissues, suggesting that high FBP''s bioavailability including absorption, tissue affinity, and tissue accumulation was responsible for the superior ACE inhibition in vivo. We propose that our ex vivo assay is an efficient and reliable method for evaluating ACE-inhibitory mechanism responsible for BPL activity in vivo.  相似文献   
994.
Although irrigation ponds contribute to the conservation of aquatic biodiversity, they have experienced declines in recent years. We therefore examined the relationships between various environmental factors and the community composition of aquatic insects, specifically insect predators, in irrigation ponds to gain knowledge that would aid in the conservation and restoration of biodiversity. We selected Odonata, Hemiptera and Coleoptera as target taxonomic groups and conducted censuses of these groups in 21 ponds in Shiga, central Japan. In total, we collected 30 and 10 species (or species groups) of Odonata and Hemiptera, respectively, and 17 species of Coleoptera. A partial canonical correspondence analysis revealed that the following four environmental factors significantly affected the species composition of aquatic insect communities: the number of emergent plant species, percent concrete revetment, presence of litter and peripheral length. Among these variables, the number of emergent plant species was the most potent factor, perhaps because emergent plants serve as sites for oviposition and emergence, and provide refugia for aquatic insects (odonate nymphs in particular). In contrast, some species specifically inhabited sites poor in emergent plants. This study shows that reductions in concrete revetments are necessary for the conservation of biodiversity. This would lead to increases in the number of aquatic plant species, which provide habitats and oviposition sites for many aquatic insects. Furthermore, to enrich the local biodiversity of aquatic insects, groups of irrigation ponds with different environments are needed.  相似文献   
995.
Although bone morphogenic protein (BMP) signaling promotes chondrogenesis, it is not clear whether BMP-induced chondrocyte maturation is cell-autonomously terminated. Loss of function of Smpd3 in mice results in an increase in mature hypertrophic chondrocytes. Here, we report that in chondrocytes the Runx2-dependent expression of Smpd3 was increased by BMP-2 stimulation. Neutral sphingomyelinase 2 (nSMase2), encoded by the Smpd3 gene, was detected both in prehypertrophic and hypertrophic chondrocytes of mouse embryo bone cartilage. An siRNA for Smpd3, as well as the nSMase inhibitor GW4869, significantly enhanced BMP-2-induced differentiation and maturation of chondrocytes. Conversely, overexpression of Smpd3 or C2-ceramide, which mimics the function of nSMase2, inhibited chondrogenesis. Upon induction of Smpd3 siRNA or GW4869, phosphorylation of both Akt and S6 proteins was increased. The accelerated chondrogenesis induced by Smpd3 silencing was negated by application of the Akt inhibitor MK2206 or the mammalian target of rapamycin inhibitor rapamycin. Importantly, in mouse bone culture, GW4869 treatment significantly promoted BMP-2-induced hypertrophic maturation and calcification of chondrocytes, which subsequently was eliminated by C2-ceramide. Smpd3 knockdown decreased the apoptosis of terminally matured ATDC5 chondrocytes, probably as a result of decreased ceramide production. In addition, we found that expression of hyaluronan synthase 2 (Has2) was elevated by a loss of Smpd3, which was restored by MK2206. Indeed, expression of Has2 protein decreased in nSMase2-positive hypertrophic chondrocytes in the bones of mouse embryos. Our data suggest that the Smpd3/nSMase2-ceramide-Akt signaling axis negatively regulates BMP-induced chondrocyte maturation and Has2 expression to control the rate of endochondral ossification as a negative feedback mechanism.  相似文献   
996.
Trichoderma reesei cellobiohydrolase I (TrCel7A) is a molecular motor that directly hydrolyzes crystalline celluloses into water-soluble cellobioses. It has recently drawn attention as a tool that could be used to convert cellulosic materials into biofuel. However, detailed mechanisms of action, including elementary reaction steps such as binding, processive hydrolysis, and dissociation, have not been thoroughly explored because of the inherent challenges associated with monitoring reactions occurring at the solid/liquid interface. The crystalline cellulose Iα and IIII were previously reported as substrates with different crystalline forms and different susceptibilities to hydrolysis by TrCel7A. In this study, we observed that different susceptibilities of cellulose Iα and IIII are highly dependent on enzyme concentration, and at nanomolar enzyme concentration, TrCel7A shows similar rates of hydrolysis against cellulose Iα and IIII. Using single-molecule fluorescence microscopy and high speed atomic force microscopy, we also determined kinetic constants of the elementary reaction steps for TrCel7A against cellulose Iα and IIII. These measurements were performed at picomolar enzyme concentration in which density of TrCel7A on crystalline cellulose was very low. Under this condition, TrCel7A displayed similar binding and dissociation rate constants for cellulose Iα and IIII and similar fractions of productive binding on cellulose Iα and IIII. Furthermore, once productively bound, TrCel7A processively hydrolyzes and moves along cellulose Iα and IIII with similar translational rates. With structural models of cellulose Iα and IIII, we propose that different susceptibilities at high TrCel7A concentration arise from surface properties of substrate, including ratio of hydrophobic surface and number of available lanes.  相似文献   
997.
Dipeptidyl peptidase-4 inhibitors are known to lower glucose levels and are also beneficial in the management of cardiovascular disease. Here, we investigated whether a dipeptidyl peptidase-4 inhibitor, vildagliptin, modulates endothelial cell network formation and revascularization processes in vitro and in vivo. Treatment with vildagliptin enhanced blood flow recovery and capillary density in the ischemic limbs of wild-type mice, with accompanying increases in phosphorylation of Akt and endothelial nitric-oxide synthase (eNOS). In contrast to wild-type mice, treatment with vildagliptin did not improve blood flow in ischemic muscles of eNOS-deficient mice. Treatment with vildagliptin increased the levels of glucagon-like peptide-1 (GLP-1) and adiponectin, which have protective effects on the vasculature. Both vildagliptin and GLP-1 increased the differentiation of cultured human umbilical vein endothelial cells (HUVECs) into vascular-like structures, although vildagliptin was less effective than GLP-1. GLP-1 and vildagliptin also stimulated the phosphorylation of Akt and eNOS in HUVECs. Pretreatment with a PI3 kinase or NOS inhibitor blocked the stimulatory effects of both vildagliptin and GLP-1 on HUVEC differentiation. Furthermore, treatment with vildagliptin only partially increased the limb flow of ischemic muscle in adiponectin-deficient mice in vivo. GLP-1, but not vildagliptin, significantly increased adiponectin expression in differentiated 3T3-L1 adipocytes in vitro. These data indicate that vildagliptin promotes endothelial cell function via eNOS signaling, an effect that may be mediated by both GLP-1-dependent and GLP-1-independent mechanisms. The beneficial activity of GLP-1 for revascularization may also be partially mediated by its ability to increase adiponectin production.  相似文献   
998.
Primary rat neonatal cardiomyocytes are useful in basic in vitro cardiovascular research because they can be easily isolated in large numbers in a single procedure. Due to advances in microscope technology it is relatively easy to capture live cell images for the purpose of investigating cellular events in real time with minimal concern regarding phototoxicity to the cells. This protocol describes how to take live cell timelapse images of primary rat neonatal cardiomyocytes using a confocal spinning disk microscope following lentiviral and adenoviral transduction to modulate properties of the cell. The application of two different types of viruses makes it easier to achieve an appropriate transduction rate and expression levels for two different genes. Well focused live cell images can be obtained using the microscope’s autofocus system, which maintains stable focus for long time periods. Applying this method, the functions of exogenously engineered proteins expressed in cultured primary cells can be analyzed. Additionally, this system can be used to examine the functions of genes through the use of siRNAs as well as of chemical modulators.  相似文献   
999.
A large-scale production system of GDP-fucose (GDP-Fuc) and fucosylated oligosaccharides was established by the combination of recombinant Escherichia coli cells overexpressing GDP-Fuc biosynthetic genes and Corynebacterium ammoniagenes cells. E. coli cells overexpressed the genes for glucokinase, phosphomannomutase, mannose-1-phosphate guanylyltransferase, GDP-mannose (GDP-Man) dehydratase, and GDP-4-keto-6-deoxy-mannose (GKDM) epimerase/reductase as well as phosphoglucomutase and phosphofructokinase. C. ammoniagenes contributed to the formation of GTP from GMP. GDP-Fuc accumulated to 29 mM (18.4 g l−1) after a 22-h reaction starting with GMP and mannose through introducing the two-step reaction to overcome the inhibition of GDP-Fuc on GDP-Man dehydratase activity. When E. coli cells overexpressing the α1,3-fucosyltransferase gene of Helicobacter pylori were put into the GDP-Fuc production system, Lewis X [Galβ1–4(Fucα1–3)GlcNAc] was produced at an amount of 40 mM (21 g l−1) for 30 h from GMP, mannose, and N-acetyl lactosamine. The production system through bacterial coupling can be applied to the industrial manufacture of fucosylated oligosaccharides. Journal of Industrial Microbiology & Biotechnology (2000) 25, 213–217. Received 01 May 2000/ Accepted in revised form 20 July 2000  相似文献   
1000.
Nine rice Oryza sativa L.) mutant lines lacking the seed storage glutelin α-2 subunit were obtained from the progenies of fertilized egg cells treated with N-methy-N-nitrosourea (MNU). The mutants could be classified into three types: the α-1 subunit increased type (α-1H/α-2L), decreased the β-2 subunit decreased type (β-2L/α-2L) and the α-3 subunit increased type (α-3H/α-2L) according to their SDS-PAGE profiles. Two-dimensional electrophoresis analysis revealed that all of the mutants lacked a polypeptide of pI 6.71/α-2, while new polypeptides of pI 6.50/α-1 and pI 6.90/α-3 formed in α-1H/α-2L and α-3H/α-2L mutants respectively. Although the β-2L/α-2L mutants did not form new polypeptide, their pI 8.74/β-2 polypeptide was also decreased, suggesting that the two polypeptides decreased in β-2L/α-2L mutants might derive from the same glutelin precursor. These mutant lines are very useful in studying genetic characterisation,the mechanism of genetic regulation on biosynthesis, gene function and proteomics of rice seed storage glutelin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号