首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4467篇
  免费   259篇
  国内免费   3篇
  4729篇
  2023年   17篇
  2022年   32篇
  2021年   47篇
  2020年   36篇
  2019年   47篇
  2018年   76篇
  2017年   77篇
  2016年   91篇
  2015年   169篇
  2014年   200篇
  2013年   297篇
  2012年   280篇
  2011年   337篇
  2010年   191篇
  2009年   154篇
  2008年   281篇
  2007年   308篇
  2006年   280篇
  2005年   302篇
  2004年   253篇
  2003年   263篇
  2002年   242篇
  2001年   44篇
  2000年   28篇
  1999年   58篇
  1998年   67篇
  1997年   45篇
  1996年   59篇
  1995年   47篇
  1994年   29篇
  1993年   38篇
  1992年   36篇
  1991年   17篇
  1990年   23篇
  1989年   31篇
  1988年   16篇
  1987年   23篇
  1986年   19篇
  1985年   20篇
  1984年   27篇
  1983年   19篇
  1982年   25篇
  1981年   12篇
  1980年   19篇
  1979年   11篇
  1978年   6篇
  1977年   4篇
  1976年   6篇
  1974年   3篇
  1973年   4篇
排序方式: 共有4729条查询结果,搜索用时 15 毫秒
61.
This study examined whether in vivo exposure to a β2‐adrenoceptor agonist, tulobuterol, induces human Period1 (hPer1) mRNA expression in cells from peripheral whole blood. In one experiment, oral tulobuterol was administered to five healthy volunteers at 22:00 h, while in another, a transdermally tulobuterol patch was applied to the same five subjects at 20:00 h. In each experiment, serum tulobuterol concentrations were measured at four time points, and total RNA was isolated from peripheral blood cells for determinations of hPer1 mRNA expression by real‐time polymerase chain reaction. Both the tulobuterol tablet and the transdermal patch increased hPer1 mRNA expression, suggesting that analyses of human peripheral blood cells could reliably represent peripheral clock gene mRNA expression in vivo.  相似文献   
62.
Root orientation can affect detection accuracy of ground-penetrating radar   总被引:1,自引:0,他引:1  

Aim

Ground-penetrating radar (GPR) has been applied to detect coarse tree roots. The horizontal angle of a root crossing a scanning line is a factor that affects both root detection and waveform parameter values. The purpose of this study was to quantitatively evaluate the influence of root orientation (x, degree) on two major waveform parameters, amplitude area (A, dB × ns) and time interval between zero crossings (T, ns).

Methods

We scanned four diameter classes of dowels in a sandy bed as simulated roots using a 900 MHz antenna from multiple angles to clarify the relationships between the parameters and x.

Results

Angle x strongly affected reflection images and A values. The variation in A(x) fitted a sinusoidal waveform, whereas T was independent of x. The value of A scanning at 90° was estimated by A values of arbitrary x in two orthogonal transects. The sum of T in all reflected waveforms showed a significant linear correlation with dowel diameter.

Conclusions

We clarified that root orientation dramatically affected root detection and A values. The sum of T of all reflected waveforms was a suitable parameter for estimating root diameter. Applying grid transects can overcome the effects of root orientation.  相似文献   
63.
Gravity is a critical environmental factor affecting the morphology and functions of organisms on the Earth. Plants sense changes in the gravity vector (gravistimulation) and regulate their growth direction accordingly. In Arabidopsis (Arabidopsis thaliana) seedlings, gravistimulation, achieved by rotating the specimens under the ambient 1g of the Earth, is known to induce a biphasic (transient and sustained) increase in cytoplasmic calcium concentration ([Ca2+]c). However, the [Ca2+]c increase genuinely caused by gravistimulation has not been identified because gravistimulation is generally accompanied by rotation of specimens on the ground (1g), adding an additional mechanical signal to the treatment. Here, we demonstrate a gravistimulation-specific Ca2+ response in Arabidopsis seedlings by separating rotation from gravistimulation by using the microgravity (less than 10−4g) conditions provided by parabolic flights. Gravistimulation without rotating the specimen caused a sustained [Ca2+]c increase, which corresponds closely to the second sustained [Ca2+]c increase observed in ground experiments. The [Ca2+]c increases were analyzed under a variety of gravity intensities (e.g. 0.5g, 1.5g, or 2g) combined with rapid switching between hypergravity and microgravity, demonstrating that Arabidopsis seedlings possess a very rapid gravity-sensing mechanism linearly transducing a wide range of gravitational changes (0.5g–2g) into Ca2+ signals on a subsecond time scale.Calcium ion (Ca2+) functions as an intracellular second messenger in many signaling pathways in plants (White and Broadley, 2003; Hetherington and Brownlee, 2004; McAinsh and Pittman, 2009; Spalding and Harper, 2011). Endogenous and exogenous signals are spatiotemporally encoded by changing the free cytoplasmic concentration of Ca2+ ([Ca2+]c), which in turn triggers [Ca2+]c-dependent downstream signaling (Sanders et al., 2002; Dodd et al., 2010). A variety of [Ca2+]c increases induced by diverse environmental and developmental stimuli are reported, such as phytohormones (Allen et al., 2000), temperature (Plieth et al., 1999; Dodd et al., 2006), and touch (Knight et al., 1991; Monshausen et al., 2009). The [Ca2+]c increase couples each stimulus and appropriate physiological responses. In the Ca2+ signaling pathways, the stimulus-specific [Ca2+]c pattern (e.g. amplitude and oscillation) provide the critical information for cellular signaling (Scrase-Field and Knight, 2003; Dodd et al., 2010). Therefore, identification of the stimulus-specific [Ca2+]c signature is crucial for an understanding of the intracellular signaling pathways and physiological responses triggered by each stimulus, as shown in the case of cold acclimation (Knight et al., 1996; Knight and Knight, 2000).Plants often exhibit biphasic [Ca2+]c increases in response to environmental stimuli. Thus, slow cooling causes a fast [Ca2+]c transient followed by a second, extended [Ca2+]c increase in Arabidopsis (Arabidopsis thaliana; Plieth et al., 1999; Knight and Knight, 2000). The Ca2+ channel blocker lanthanum (La3+) attenuated the fast transient but not the following increase (Knight and Knight, 2000), suggesting that these two [Ca2+]c peaks have different origins. Similarly, hypoosmotic shock caused a biphasic [Ca2+]c increase in tobacco (Nicotiana tabacum) suspension-culture cells (Takahashi et al., 1997; Cessna et al., 1998). The first [Ca2+]c peak was inhibited by gadolinium (Gd3+), La3+, and the Ca2+ chelator EGTA (Takahashi et al., 1997; Cessna et al., 1998), whereas the second [Ca2+]c increase was inhibited by the intracellular Ca2+ store-depleting agent caffeine but not by EGTA (Cessna et al., 1998). The amplitude of the first [Ca2+]c peak affected the amplitude of the second increase and vice versa (Cessna et al., 1998). These results suggest that even though the two [Ca2+]c peaks originate from different Ca2+ fluxes (e.g. Ca2+ influx through the plasma membrane and Ca2+ release from subcellular stores, respectively), they are closely interrelated, showing the importance of the kinetic and pharmacological analyses of these [Ca2+]c increases.Changes in the gravity vector (gravistimulation) could work as crucial environmental stimuli in plants and are generally achieved by rotating the specimens (e.g. +180°) in ground experiments. Use of Arabidopsis seedlings expressing apoaequorin, a Ca2+-reporting photoprotein (Plieth and Trewavas, 2002; Toyota et al., 2008a), has revealed that gravistimulation induces a biphasic [Ca2+]c increase that may be involved in the sensory pathway for gravity perception/response (Pickard, 2007; Toyota and Gilroy, 2013) and the intracellular distribution of auxin transporters (Benjamins et al., 2003; Zhang et al., 2011). These two Ca2+ changes have different characteristics. The first transient [Ca2+]c increase depends on the rotational velocity but not angle, whereas the second sustained [Ca2+]c increase depends on the rotational angle but not velocity. The first [Ca2+]c transient was inhibited by Gd3+, La3+, and the Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid but not by ruthenium red (RR), whereas the second sustained [Ca2+]c increase was inhibited by all these chemicals. These results suggest that the first transient and second sustained [Ca2+]c increases are related to the rotational stimulation and the gravistimulation, respectively, and are mediated by distinct molecular mechanisms (Toyota et al., 2008a). However, it has not been demonstrated directly that the second sustained [Ca2+]c increase is induced solely by gravistimulation; it could be influenced by other factors, such as an interaction with the first transient [Ca2+]c increase (Cessna et al., 1998), vibration, and/or deformation of plants during the rotation.To elucidate the genuine Ca2+ signature in response to gravistimulation in plants, we separated rotation and gravistimulation under microgravity (μg; less than 10−4g) conditions provided by parabolic flight (PF). Using this approach, we were able to apply rotation and gravistimulation to plants separately (Fig. 1). When Arabidopsis seedlings were rotated +180° under μg conditions, the [Ca2+]c response to the rotation was transient and almost totally attenuated in a few seconds. Gravistimulation (transition from μg to 1.5g) was then applied to these prerotated specimens at the terminating phase of the PF. This gravistimulation without simultaneous rotation induced a sustained [Ca2+]c increase. The kinetic properties of this sustained [Ca2+]c increase were examined under different gravity intensities (0.5g–2g) and sequences of gravity intensity changes (Fig. 2A). This analysis revealed that gravistimulation-specific Ca2+ response has an almost linear dependency on gravitational acceleration (0.5g–2g) and an extremely rapid responsiveness of less than 1 s.Open in a separate windowFigure 1.Diagram of the experimental procedures for applying separately rotation and gravistimulation to Arabidopsis seedlings. Rotatory stimulation (green arrow) was applied by rotating the seedlings 180° under μg conditions, and 1.5g 180° rotation gravistimulation (blue arrow) was applied to the prerotated seedlings after μg.Open in a separate windowFigure 2.Acceleration, temperature, humidity, and pressure in an aircraft during flight experiments. A, Accelerations along x, y, and z axes in the aircraft during PF. The direction of flight (FWD) and coordinates (x, y, and z) are indicated in the bottom graph. The inset shows an enlargement of the acceleration along the z axis (gravitational acceleration) during μg conditions lasting for approximately 20 s. B, Temperature, humidity, and pressure in the aircraft during PF. Shaded areas in graphs denote the μg condition.  相似文献   
64.
The effect of insulin-like growth factor-1 (IGF-1) on the behavior of rabbit chondrocytes in cultured collagen (CL) gels initially seeded with 2 × 105 cells/ml was examined. On day 5, the frequency of migrating cells cultured in presence of 100 ng IGF-1/ml was 0.04, which was 54 % of the frequency in IGF-1-free culture. The presence of IGF-1 caused an increase in the frequency of dividing cells from 0.09 to 0.13. These results suggest that IGF-1 suppressed the migration of chondrocytes in the CL gels while stimulating cell division in the initial culture phase. The proteolytic migration of cells was thought to be suppressed by the down-regulation of membrane type 1 matrix metalloproteinase by IGF-1. This contributed to the formation of aggregates with spherical-shaped cells that produced collagen type II.  相似文献   
65.
Acinetobacter sp. strain YAA has five genes (atdA1 to atdA5) involved in aniline oxidation as a part of the aniline degradation gene cluster. From sequence analysis, the five genes were expected to encode a glutamine synthetase (GS)-like protein (AtdA1), a glutamine amidotransferase-like protein (AtdA2), and an aromatic compound dioxygenase (AtdA3, AtdA4, and AtdA5) (M. Takeo, T. Fujii, and Y. Maeda, J. Ferment. Bioeng. 85:17-24, 1998). A recombinant Pseudomonas strain harboring these five genes quantitatively converted aniline into catechol, demonstrating that catechol is the major oxidation product from aniline. To elucidate the function of the GS-like protein AtdA1 in aniline oxidation, we purified it from recombinant Escherichia coli harboring atdA1. The purified AtdA1 protein produced gamma-glutamylanilide (γ-GA) quantitatively from aniline and l-glutamate in the presence of ATP and MgCl2. This reaction was identical to glutamine synthesis by GS, except for the use of aniline instead of ammonia as the substrate. Recombinant Pseudomonas strains harboring the dioxygenase genes (atdA3 to atdA5) were unable to degrade aniline but converted γ-GA into catechol, indicating that γ-GA is an intermediate to catechol and a direct substrate for the dioxygenase. Unexpectedly, a recombinant Pseudomonas strain harboring only atdA2 hydrolyzed γ-GA into aniline, reversing the γ-GA formation by AtdA1. Deletion of atdA2 from atdA1 to atdA5 caused γ-GA accumulation from aniline in recombinant Pseudomonas cells and inhibited the growth of a recombinant Acinetobacter strain on aniline, suggesting that AtdA2 prevents γ-GA accumulation that is harmful to the host cell.  相似文献   
66.
Eight α-N-acyl colistin nonapeptide derivatives including three aliphatic, four aromatic and one alicyclic derivatives were synthesized by the reaction of colistin nonapeptide with corresponding acid chlorides. This acylation reaction was carried out under the condition kept restrictedly at pH 5,0 in order to introduce an acyl group only to α-amino group but not to γ-amino group existing in a colistin nonapeptide molecule. Synthetic method and several physico-chemical natures of these acyl colistin nonapeptide derivatives are given in this paper.

All of the acylated derivatives thus synthesized exhibited characteristic antimicrobial activities. Antimicrobial spectra were substantially based upon a gram-negative type and not so much altered by chemical structures of acyl groups which were considerably differentiated from each other such as cyclic or chain form. Thus, more possible response of carbon size than its structure to the antimicrobial effectiveness was inferred. In spite of almost no toxicity and feeble antimicrobial activity of colistin nonapeptide itself, these acylated colistin nonapeptide derivatives showed a toxicity against mice at a dose of 16.9~70 mg/kg in LD50, which, however, was inferior to the toxicity of colistin sulfate, possibly correspondent to their much weaker antimicrobial activities, as a whole. Hence, it seems likely that acyl part of these acylated colistin nonapeptide derivatives including that of colistin is seriously responsible for the biological activities.  相似文献   
67.
A shuttle vector for Gluconobacter suboxydans and Escherichia coli was constructed by ligation of a cryptic plasmid, pMV201, found in G. suboxydans IFO 3130 to E. coli plasmid pACYC177. The chimeric plasmid named pMGlOl carries the ampicillin resistance gene derived from pACYC177 and transforms G. suboxydans var. α IFO 3254 as well as E. coli. The transformation conditions for G. suboxydansvar. α IFO 3254 were examined using pMGlOl DNA. Competent cells were induced efficiently by treatment with LiCl or RbCl CaCl2 which induced the competency of Acetobacter was much less effective. Addition of polyethylene glycol enhanced the transformation efficiency significantly. An efficiency of approximately 102 transformants per μg DNA was finally obtained.  相似文献   
68.
The NaCl concentration of the growth medium affected hydrogen production by Lyngbya sp. (No. 108) strain. Cells grown in medium containing 3% NaCl produced the most hydrogen. The carbohydrate content of this strain also increased with increasing NaCl concentration of the growth medium up to 720 fig/mg cells at 5 % NaCl. In the presence of 20 finlol/ml MFA (monofluoroacetic acid), inhibition of hydrogen production was observed. We extracted the glycogen from this nonheterocystous filamentous cyanobacterium, Lyngbya sp. (No. 108), and observed that glycogen and carbohydrate consumption of this strain is coincident with hydrogen production.

These results led us to the conclusion that the reserve glycogen or other carbohydrate were used as sources of electron donors for hydrogen production, and that the NaCl concentration of the medium affected the hydrogen production by this strain.  相似文献   
69.
The concomitant production of formic acid and pterin compounds from guanosine-5′-triphosphate (GTP) has been found in cell-free extracts of Serratia indica. Among the pterin compounds, l-threo-neopterin–the major Crithidia factor in S. indica–, a cyclic phosphate of neopterin (cNP), d-erythro-neopterin and 6-hydroxymethyl pterin were detected and isolated. Formate-14C elimination from GTP-8-14C was quantitatively distributed in the ethyl acetate layer in the ehyl acetate-hydrochloric acid partition system. Carbon 8 of GTP was released as formic acid. Enzymatic production of formate and cNP was linear for 2 hr at 37°C. Formate production was proportional to the enzyme concentration. The optimum pH for formate elimination was observed around pH 8.6. Optimum temperature for the production of formate and cNP was 50°C. The apparent Km value of GTP for formate production was 6.2×10?bm. Formate eliminating activity was activated by disodium phosphate but was inhibited by Mg2+ or AMP. Incorporation of GTP-U-14C into pterin compounds was also regulated with disodium phosphate. Effective incorporation into cNP and d-erythro-neopterin occurred in the presence of phosphate. When phosphate was omitted from the system, however, effective incorporation into 6-hydroxymethyl pterin was observed. The biosynthetic process of the Crithidia factors, i.e. l-threo-neopterin and cNP, from GTP in S. indica is also discussed.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号