首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3458篇
  免费   183篇
  国内免费   1篇
  2022年   15篇
  2021年   32篇
  2020年   20篇
  2019年   23篇
  2018年   42篇
  2017年   41篇
  2016年   50篇
  2015年   89篇
  2014年   108篇
  2013年   213篇
  2012年   184篇
  2011年   194篇
  2010年   115篇
  2009年   122篇
  2008年   207篇
  2007年   192篇
  2006年   188篇
  2005年   177篇
  2004年   179篇
  2003年   189篇
  2002年   197篇
  2001年   84篇
  2000年   60篇
  1999年   85篇
  1998年   63篇
  1997年   43篇
  1996年   24篇
  1995年   34篇
  1994年   27篇
  1993年   28篇
  1992年   59篇
  1991年   46篇
  1990年   41篇
  1989年   48篇
  1988年   36篇
  1987年   21篇
  1986年   31篇
  1985年   32篇
  1984年   38篇
  1983年   31篇
  1982年   22篇
  1981年   25篇
  1980年   20篇
  1979年   22篇
  1978年   15篇
  1976年   11篇
  1974年   12篇
  1972年   20篇
  1971年   9篇
  1970年   9篇
排序方式: 共有3642条查询结果,搜索用时 15 毫秒
121.
Dopamine regulates the psychomotor stimulant activities of amphetamine-like substances in the brain. The effects of dopamine are mediated through five known dopamine receptor subtypes in mammals. The functional relevance of D5 dopamine receptors in the central nervous system is not well understood. To determine the functional relevance of D5 dopamine receptors, we created D5 dopamine receptor-deficient mice and then used these mice to assess the roles of D5 dopamine receptors in the behavioral response to methamphetamine. Interestingly, D5 dopamine receptor-deficient mice displayed increased ambulation in response to methamphetamine. Furthermore, dopamine transporter threonine phosphorylation levels, which regulate amphetamine-induced dopamine release, were elevated in D5 dopamine receptor-deficient mice. The increase in methamphetamine-induced locomotor activity was eliminated by pretreatment with the dopamine transporter blocker GBR12909. Taken together, these results suggest that dopamine transporter activity and threonine phosphorylation levels are regulated by D5 dopamine receptors.  相似文献   
122.
Narcolepsy patients often suffer from insomnia in addition to excessive daytime sleepiness. Narcoleptic animals also show behavioral instability characterized by frequent transitions between all vigilance states, exhibiting very short bouts of NREM sleep as well as wakefulness. The instability of wakefulness states in narcolepsy is thought to be due to deficiency of orexins, neuropeptides produced in the lateral hypothalamic neurons, which play a highly important role in maintaining wakefulness. However, the mechanism responsible for sleep instability in this disorder remains to be elucidated. Because firing of orexin neurons ceases during sleep in healthy animals, deficiency of orexins does not explain the abnormality of sleep. We hypothesized that chronic compensatory changes in the neurophysiologica activity of the locus coeruleus (LC) and dorsal raphe (DR) nucleus in response to the progressive loss of endogenous orexin tone underlie the pathological regulation of sleep/wake states. To evaluate this hypothesis, we examined firing patterns of serotonergic (5-HT) neurons and noradrenergic (NA) neurons in the brain stem, two important neuronal populations in the regulation of sleep/wakefulness states. We recorded single-unit activities of 5-HT neurons and NA neurons in the DR nucleus and LC of orexin neuron-ablated narcoleptic mice. We found that while the firing pattern of 5-HT neurons in narcoleptic mice was similar to that in wildtype mice, that of NA neurons was significantly different from that in wildtype mice. In narcoleptic mice, NA neurons showed a higher firing frequency during both wakefulness and NREM sleep as compared with wildtype mice. In vitro patch-clamp study of NA neurons of narcoleptic mice suggested a functional decrease of GABAergic input to these neurons. These alterations might play roles in the sleep abnormality in narcolepsy.  相似文献   
123.
The mammalian visual system exhibits significant experience-induced plasticity in the early postnatal period. While physiological studies have revealed the contribution of the CB1 cannabinoid receptor (CB1) to developmental plasticity in the primary visual cortex (V1), it remains unknown whether the expression and localization of CB1 is regulated during development or by visual experience. To explore a possible role of the endocannabinoid system in visual cortical plasticity, we examined the expression of CB1 in the visual cortex of mice. We found intense CB1 immunoreactivity in layers II/III and VI. CB1 mainly localized at vesicular GABA transporter-positive inhibitory nerve terminals. The amount of CB1 protein increased throughout development, and the specific laminar pattern of CB1 appeared at P20 and remained until adulthood. Dark rearing from birth to P30 decreased the amount of CB1 protein in V1 and altered the synaptic localization of CB1 in the deep layer. Dark rearing until P50, however, did not influence the expression of CB1. Brief monocular deprivation for 2 days upregulated the localization of CB1 at inhibitory nerve terminals in the deep layer. Taken together, the expression and the localization of CB1 are developmentally regulated, and both parameters are influenced by visual experience.  相似文献   
124.
The kidney, the metanephros, is formed by reciprocal interactions between the metanephric mesenchyme and the ureteric bud, the latter of which is derived from the Wolffian duct that elongates in the rostral-to-caudal direction. Sall1 expressed in the metanephric mesenchyme is essential for ureteric bud attraction in kidney development. Sall4, another member of the Sall gene family, is required for maintenance of embryonic stem cells and establishment of induced pluripotent stem cells, and is thus considered to be one of the stemness genes. Sall4 is also a causative gene for Okihiro syndrome and is essential for the formation of many organs in both humans and mice. However, its expression and role in kidney development remain unknown, despite the essential role of Sall1 in the metanephric mesenchyme. Here, we report that mouse Sall4 is expressed transiently in the Wolffian duct-derived lineage, and is nearly complementary to Sall1 expression. While Sall4 expression is excluded from the Wolffian duct at embryonic (E) day 9.5, Sall4 is expressed in the Wolffian duct weakly in the mesonephric region at E10.5 and more abundantly in the caudal metanephric region where ureteric budding occurs. Sall4 expression is highest at E11.5 in the Wolffian duct and ureteric bud, but disappears by E13.5. We further demonstrate that Sall4 deletion in the Wolffian duct and ureteric bud does not cause any apparent kidney phenotypes. Therefore, Sall4 is expressed transiently in the caudal Wolffian duct and the ureteric bud, but is dispensable for kidney development in mice.  相似文献   
125.
Interferons (IFNs) have been tested for the therapeutic effects in various types of malignancy, but mechanisms of the anti-tumors effects and the differential biological activities among IFN members are dependent on respective cell types. In this study, we examined growth inhibitory activities of type I and III IFNs on 5 kinds of human mesothelioma cells bearing wild-type p53 gene, and showed that type I IFNs but not type III IFNs decreased the cell viabilities. Moreover, growth inhibitory activities and up-regulated expression levels of the major histocompatibility complexes class I antigens were greater with IFN-β than with IFN-α treatments. Cell cycle analyses demonstrated that type I IFNs increased S- and G2/M-phase populations, and subsequently sub-G1-phase fractions. The cell cycle changes were also greater with IFN-β than IFN-α treatments, and these data collectively showed that IFN-β had stronger biological activities than IFN-α in mesothelioma. Type I IFNs-treated cells increased p53 expression and the phosphorylation levels, and activated apoptotic pathways. A combinatory use of IFN-β and cisplatin or pemetrexed, both of which are the current first-line chemotherapeutic agents for mesothelioma, produced synergistic anti-tumor effects, which were also evidenced by increased sub-G1-phase fractions. These data demonstrated firstly to our knowledge that IFN-β produced synergistic anti-tumor effects with cisplatin or pemetrexed on mesothelioma through up-regulated p53 expression.  相似文献   
126.
Musclin is a novel skeletal muscle-derived secretory factor found in the signal sequence trap of mouse skeletal muscle cDNAs. Musclin possesses a region homologous to the natriuretic peptide family. Thus, musclin is found to bind with the natriuretic peptide clearance receptors. However, the role of musclin in vascular regulation remains unclear. In this study, we aim to investigate the direct effect of musclin on vascular tone and to analyze its role in hypertension using the spontaneously hypertensive rats (SHR). In aortic strips isolated from SHR, musclin induced contractions in a dose-dependent manner. We found that the musclin-induced vasoconstriction was more marked in SHR than in normal rats (WKY). Moreover, this contraction was reduced by blockade of natriuretic peptide receptor C using the ab14355 antibody. Therefore, mediation of the natriuretic peptide receptor in musclin-induced vasoconstriction can be considered. In addition, similar to the natriuretic peptide receptor, expression of the musclin gene in blood vessels was higher in SHR than in WKY. Injection of musclin markedly increased the blood pressure in rats that can be inhibited by anti-musclin antibodies. Musclin-induced vasoconstriction was more pronounced in SHR than in WKY as in its expression. Taken together, these results suggest that musclin is involved in blood pressure regulation. The higher expression of musclin in hypertension indicates that musclin could be used as a new target for the treatment of hypertension in the future.  相似文献   
127.
Group A rotavirus (RVA) rarely causes severe complications such as encephalitis/encephalopathy. However, the pathophysiology of this specific complication remains unclear. Next-generation sequence analysis was used to compare the entire genome sequences of RVAs detected in patients with encephalitis/encephalopathy and gastroenteritis. This study enrolled eight patients with RVA encephalitis/encephalopathy and 10 with RVA gastroenteritis who were treated between February 2013 and July 2014. Viral RNAs were extracted from patients' stool, and whole-genome sequencing analysis was carried out to identify the specific gene mutations in RVA obtained from patients with severe neurological complications. Among the eight encephalitis/encephalopathy cases, six strains were DS-1-like G1P[8] and the remaining two were Wa-like G1P[8] (G1-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1). Meanwhile, eight of the 10 viruses detected in rotavirus gastroenteritis patients were DS-1-like G1P[8], and the remaining two were Wa-like G1P[8]. These strains were further characterized by conducting phylogenetic analysis. No specific clustering was demonstrated in RVAs detected from encephalitis/encephalopathy patients. Although the DS-1-like G1P[8] strain was predominant in both groups, no specific molecular characteristics were detected in RVAs from patients with severe central nervous system complications.  相似文献   
128.
Mother–calf interactions and the behaviors of mothers during separation from their calves were examined in four Commerson’s dolphin (Cephalorhynchus commersonii) mother–calf pairs. Four infants were observed: 56.8 h over 30 days from birth to 263 days of age, 36.9 h over 20 days from birth to 149 days of age, 10.4 h over 3 days from birth to 2 days of age, and 15.0 h over 3 days from birth to 2 days of age. All four pairs shared common characteristics in the rate and frequencies of mother–calf interactions and the behaviors of mothers during the first week of life. After the first week, individual differences in changes in the frequency of each behavior were observed. The three behaviors considered representative of maternal care (parallel swimming, synchronous breathing, and body-to-body contact) were frequently performed in the first week; thereafter, the frequencies declined. Separate behaviors of mothers were infrequent during the first week and increased with an increase in infants’ age. Bumping by infants increased with time, suggesting an increase in soliciting by calves and conflict between mothers and calves. The frequency of flipper-to-body rubbing also changed but in a complex manner, probably because the calves needed to learn how to perform this behavior from their mothers and because initiator and recipient of this behavior can be changed quickly.  相似文献   
129.
Pituitary adenylate cyclase-activating peptide (PACAP) is widely distributed throughout the nervous system. PACAP not only acts as a neurotransmitter but also elicits a broad spectrum of biological action via the PACAP-specific receptor, PAC1. However, no studies have investigated PACAP and PAC1 in the periodontal ligament (PDL), so we aimed to perform this investigation in rats after tooth luxation. In the PDL of an intact first molar, there are few osteoclasts and osteoblasts. However, at days 3 and 5 after luxation, large PAC1-positive cells, thought to be osteoclasts because of their expression of the osteoclast marker, tartrate-resistant acid phosphatase, were detected in appreciable numbers. Osteoblast numbers increased dramatically on day 7 after luxation, and PAC1-positive mononuclear small cells were increased at day 14, many of which expressed the osteoblast marker, alkaline phosphatase. PACAP-positive nerve fibers were rarely detected in the PDL of intact first molars, but were increasingly evident at this site on days 5 and 7 after luxation. Double-immunofluorescence analysis demonstrated the relationship between PACAP-positive nerve fibers and PAC1-positive osteoclasts/-blasts in the PDL. At 5 days after luxation, PACAP-positive nerve fibers appeared in close proximity to PAC1-positive osteoclasts. At 7 days after luxation, PACAP-positive nerve fibers appeared in close proximity to PAC1-positive osteoblasts. These results suggest that PACAP may have effects on osteoclasts and osteoblasts in the PDL after tooth luxation and thus regulate bone remodeling after these types of injury.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号