首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   560篇
  免费   37篇
  597篇
  2023年   3篇
  2022年   6篇
  2021年   14篇
  2020年   12篇
  2019年   11篇
  2018年   10篇
  2017年   6篇
  2016年   10篇
  2015年   20篇
  2014年   29篇
  2013年   42篇
  2012年   35篇
  2011年   50篇
  2010年   15篇
  2009年   20篇
  2008年   45篇
  2007年   41篇
  2006年   32篇
  2005年   31篇
  2004年   30篇
  2003年   30篇
  2002年   33篇
  2001年   6篇
  2000年   5篇
  1999年   5篇
  1998年   9篇
  1997年   2篇
  1996年   3篇
  1995年   6篇
  1994年   3篇
  1993年   8篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   8篇
  1981年   1篇
  1980年   1篇
  1976年   1篇
  1973年   1篇
  1967年   1篇
  1938年   1篇
排序方式: 共有597条查询结果,搜索用时 12 毫秒
531.
Kikkawa M  Hirokawa N 《The EMBO journal》2006,25(18):4187-4194
Kinesin is an ATP-driven microtubule (MT)-based motor fundamental to organelle transport. Although a number of kinesin crystal structures have been solved, the structural evidence for coupling between the bound nucleotide and the conformation of kinesin is elusive. In addition, the structural basis of the MT-induced ATPase activity of kinesin is not clear because of the absence of the MT in the structure. Here, we report cryo-electron microscopy structures of the monomeric kinesin KIF1A-MT complex in two nucleotide states at about 10 A resolution, sufficient to reveal the secondary structure. These high-resolution maps visualized clear structural changes that suggest a mechanical pathway from the nucleotide to the neck linker via the motor core rotation. In addition, new nucleotide binding pocket conformations are observed that are different from X-ray crystallographic structures; it is closed in the 5'-adenylyl-imidodiphosphate state, but open in the ADP state. These results suggest a structural model of biased diffusion movement of monomeric kinesin motor.  相似文献   
532.
Chicken muscular dystrophy with abnormal muscle (AM) has been studied for more than 50 years, but the gene responsible for it remains unclear. Our previous studies narrowed down the AM candidate region to approximately 1Mbp of chicken chromosome 2q containing seven genes. In this study, we performed sequence comparison and gene expression analysis to elucidate the responsible gene. One missense mutation was detected in AM candidate genes, while no remarkable alteration of expression patterns was observed. The mutation was identified in WWP1, detected only in dystrophic chickens within several tetrapods. These results suggested WWP1 is responsible for chicken muscular dystrophy.  相似文献   
533.
The Ret receptor tyrosine kinase plays a crucial role in the development of the enteric nervous system and the kidney. Tyrosine 1062 in Ret represents a binding site for the phosphotyrosine-binding domains of several adaptor and effector proteins that are important for the activation of intracellular signaling pathways, such as the RAS/ERK, phosphatidylinositol 3-kinase/AKT, and Jun-associated N-terminal kinase pathways. To investigate the importance of tyrosine 1062 for organogenesis in vivo, knock-in mice in which tyrosine 1062 in Ret was replaced with phenylalanine were generated. Although homozygous knock-in mice were born normally, they died by day 27 after birth and showed growth retardation. The development of the enteric nervous system was severely impaired in homozygous mutant mice, about 40% of which lacked enteric neurons in the whole intestinal tract, as observed in Ret-deficient mice. The rest of the mutant mice developed enteric neurons in the intestine to various extents, although the size and number of ganglion cells were significantly reduced. Unlike Ret-deficient mice, a small kidney developed in all knock-in mice, accompanying a slight histological change. The reduction of kidney size was due to a decrease of ureteric bud branching during embryogenesis. Thus, these findings demonstrated that the signal via tyrosine 1062 plays an important role in histogenesis of the enteric nervous system and nephrogenesis.  相似文献   
534.
We purified and characterized an intracellular beta-N-acetylglucosaminidase (NagC) from a cytoplasmic fraction of Streptomyces thermoviolaceus OPC-520. The molecular mass of NagC was estimated to be 60 kDa by SDS-polyacrylamide gel electrophoresis (SDS-PAGE). The optimum pH and temperature of the enzyme were 6.0 and 50 degrees C respectively. Purified NagC hydrolyzed chitin oligosaccharides from N,N'-diacetylchitobiose (GlcNAc)(2) to chitopentaose (GlcNAc)(5), hydrolyzed N,N'-diacetylchitobiose especially rapidly, and showed a tendency to decrease with increases in the degree of polymerization. But, NagC didn't hydrolyze chitohexaose (GlcNAc)(6). The gene encoding NagC was cloned and sequenced. The open reading frame of nagC encoded a protein of 564 amino acids with a calculated molecular mass of 62,076 Da. The deduced amino acid sequence of NagC showed homology with several beta-N-acetylglucosaminidases belonging to glycosyl hydrolase family 20. The expression plasmid coding for NagC was constructed in Escherichia coli. The recombinant enzyme showed pH and temperature optima and substrate specificity similar to those of the native enzyme. The gene arrangement near the nagC gene of S. thermoviolaceus OPC-520 was compared with that of S. coelicolor A3(2). Three genes, which appear to constitute an ABC transport system for sugar, were missing in the vicinity of the nagC gene.  相似文献   
535.
536.

Background

On March 11, 2011, Japan was struck by a massive earthquake and tsunami. The tsunami caused tremendous damage and traumatized several people, including children. The aim of this study was to assess changes in traumatic symptoms 8, 20, and 30 months of the 2011 tsunami.

Methods

The study comprised three groups. Copies of the Post-Traumatic Stress Symptoms for Children 15 items (PTSSC-15), a self-rating questionnaire on traumatic symptoms, were distributed to 12,524 children (8-month period), 12,193 children (20-month period), and 11,819 children (30-month period). An effective response of children 8 months, 20 months, and 30 month after the disaster was obtained in 11,639 (92.9%), 10,597 (86.9%), and 10,812 children (91.4%), respectively. We calculated the total score, PTSD subscale, and Depression subscale of PTSSC-15. We calculated the total score, PTSD subscale, and Depression subscale of PTSSC-15.

Results

The PTSSC-15 total score and PTSD subscale of children belonging to 1st–9th grade groups who were tested 30 and 20 months after the tsunami significantly decreased compared with those of children tested 8 months after the tsunami. The PTSSC-15 total score and PTSD subscale of children in 1st–9th grade groups tested after 30 months did not decrease significantly compared with those of children tested after 20 months. The PTSSC-15 Depression subscale and PTSD subscale of children in 1st–9th grade groups tested after 30 months significantly decreased compared with those of children tested 8 months after the tsunami. The PTSSC-15 Depression subscale of children in 1st–9th grade groups evaluated after 30 months significantly decreased compared with those of children evaluated after 20 months.

Conclusions

This study demonstrates that the traumatic symptoms of children who survived the massive tsunami improved with time. Nonetheless, the traumatic symptoms, which in some cases did not improve with time.  相似文献   
537.
Cytoplasmic dynein is a motor protein that walks toward the minus end of microtubules (MTs) by utilizing the energy of ATP hydrolysis. The heavy chain of cytoplasmic dynein contains the microtubule-binding domain (MTBD). Switching of MTBD between high and low affinity states for MTs is crucial for processive movement of cytoplasmic dynein. Previous biochemical studies demonstrated that the affinity of MTBD is regulated by the AAA+ family ATPase domain, which is separated by 15 nm long coiled-coil helix. In order to elucidate the structural basis of the affinity switching mechanism of MTBD, we designed two MTBD constructs, termed MTBD-High and MTBD-Low, which are locked in high and low affinity state for MTs, respectively, by introducing a disulfide bond between the coiled-coil helix. Here, we established the backbone and side-chain assignments of MTBD-High and MTBD-Low for further structural analyses.  相似文献   
538.
Alteromonas sp. strain O-7 secretes chitinase A (ChiA), chitinase B (ChiB), and chitinase C (ChiC) in the presence of chitin. A gene cluster involved in the chitinolytic system of the strain was cloned and sequenced upstream of and including the chiA gene. The gene cluster consisted of three different open reading frames organized in the order chiD, cbp1, and chiA. The chiD, cbp1, and chiA genes were closely linked and transcribed in the same direction. Sequence analysis indicated that Cbp1 (475 amino acids) was a chitin-binding protein composed of two discrete functional regions. ChiD (1,037 amino acids) showed sequence similarity to bacterial chitinases classified into family 18 of glycosyl hydrolases. The cbp1 and chiD genes were expressed in Escherichia coli, and the recombinant proteins were purified to homogeneity. The highest binding activities of Cbp1 and ChiD were observed when alpha-chitin was used as a substrate. Cbp1 and ChiD possessed a chitin-binding domain (ChtBD) belonging to ChtBD type 3. ChiD rapidly hydrolyzed chitin oligosaccharides in sizes from trimers to hexamers, but not chitin. However, after prolonged incubation with large amounts of ChiD, the enzyme produced a small amount of (GlcNAc)(2) from chitin. The optimum temperature and pH of ChiD were 50 degrees C and 7.0, respectively.  相似文献   
539.
The identity of mycorrhizal fungi associated with the achlorophyllous orchid Epipogium roseum was investigated by DNA analysis. The fungi were isolated from each coiled hypha (peloton), and the ITS region of nuclear rDNA was sequenced. Phylogenetic analysis based on the neighbor-joining method showed that all the isolates clustered with fungi belonging to Psathyrella or Coprinus in Coprinaceae. Those fungi are known as saprobes, using dead organic materials for a nutritive source. Large colonies of this orchid were frequently found around tree stumps or fallen logs. In such colonies, these decaying wood materials would be used as a large and persistent carbon source for the growth of this orchid. This is the first report of Coprinaceae as an orchid mycorrhizal fungi.  相似文献   
540.
Conformational changes of Arabidopsis phot1-LOV2 with the linker (phot1-LOV2-linker) were investigated from the viewpoint of the changes in molecular volume and molecular diffusion coefficient (D) by time-resolved transient grating (TG) and transient lens (TrL) methods. Although the absorption spectrum change completes within a few microseconds, the D-value detected by the TG method decreased drastically with a time constant of 1.0 ms from 9.2(+/-0.4)x10(-11) m(2)/s to 5.0(+/-0.3)x10(-11) m(2)/s. This time-dependent D was interpreted in terms of the unfolding of alpha-helices in the linker region. The change of the alpha-helices was confirmed by observing the recovery of the circular dichroism intensity. The TrL signal showed that the molecular volume decreases with two time constants; 300 micros and 1.0 ms. The former time constant is close to the previously observed photo-dissociation reaction rate of the phot1-LOV2 (without the linker) dimer, and the latter one agrees well with the rate of the D-change. Considering a similar time constant of the dissociation reaction of the LOV2 dimer, we interpreted these kinetics in terms of the dissociation step of the linker region from the LOV2 domain (T(390)(pre) state). After this step, the protein volume and D are decreased significantly with the lifetime of 1.0 ms. The D decrease indicates the increase of the intermolecular interaction between the protein and water molecules. On the basis of these observations, a two-step mechanism of the linker unfolding is proposed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号