首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   718篇
  免费   54篇
  772篇
  2022年   4篇
  2021年   7篇
  2020年   7篇
  2019年   5篇
  2018年   12篇
  2017年   4篇
  2016年   8篇
  2015年   23篇
  2014年   33篇
  2013年   34篇
  2012年   37篇
  2011年   50篇
  2010年   16篇
  2009年   22篇
  2008年   52篇
  2007年   49篇
  2006年   38篇
  2005年   47篇
  2004年   38篇
  2003年   41篇
  2002年   44篇
  2001年   17篇
  2000年   19篇
  1999年   14篇
  1998年   9篇
  1997年   3篇
  1996年   6篇
  1995年   7篇
  1994年   3篇
  1993年   11篇
  1992年   10篇
  1991年   12篇
  1990年   12篇
  1989年   9篇
  1988年   9篇
  1987年   5篇
  1986年   5篇
  1985年   4篇
  1984年   2篇
  1983年   7篇
  1982年   11篇
  1981年   8篇
  1980年   2篇
  1978年   5篇
  1977年   3篇
  1975年   2篇
  1973年   1篇
  1972年   1篇
  1967年   1篇
  1938年   1篇
排序方式: 共有772条查询结果,搜索用时 0 毫秒
91.
Fukada M  Fujikawa A  Chow JP  Ikematsu S  Sakuma S  Noda M 《FEBS letters》2006,580(17):4051-4056
Receptor-type protein tyrosine phosphatases (RPTPs) are considered to transduce extracellular signals across the membrane through changes in their PTP activity, however, our understanding of the regulatory mechanism is still limited. Here, we show that pleiotrophin (PTN), a natural ligand for protein tyrosine phosphatase receptor type Z (Ptprz) (also called PTPzeta/RPTPbeta), inactivates Ptprz through oligomerization and increases the tyrosine phosphorylation of substrates for Ptprz, G protein-coupled receptor kinase-interactor 1 (Git1) and membrane associated guanylate kinase, WW and PDZ domain containing 1 (Magi1). Oligomerization of Ptprz by an artificial dimerizer or polyclonal antibodies against its extracellular region also leads to inactivation, indicating that Ptprz is active in the monomeric form and inactivated by ligand-induced oligomerization.  相似文献   
92.
We present the first structure of a glycoside hydrolase family 79 β-glucuronidase from Acidobacterium capsulatum, both as a product complex with β-D-glucuronic acid (GlcA) and as its trapped covalent 2-fluoroglucuronyl intermediate. This enzyme consists of a catalytic (β/α)(8)-barrel domain and a β-domain with irregular Greek key motifs that is of unknown function. The enzyme showed β-glucuronidase activity and trace levels of β-glucosidase and β-xylosidase activities. In conjunction with mutagenesis studies, these structures identify the catalytic residues as Glu(173) (acid base) and Glu(287) (nucleophile), consistent with the retaining mechanism demonstrated by (1)H NMR analysis. Glu(45), Tyr(243), Tyr(292)-Gly(294), and Tyr(334) form the catalytic pocket and provide substrate discrimination. Consistent with this, the Y292A mutation, which affects the interaction between the main chains of Gln(293) and Gly(294) and the GlcA carboxyl group, resulted in significant loss of β-glucuronidase activity while retaining the side activities at wild-type levels. Likewise, although the β-glucuronidase activity of the Y334F mutant is ~200-fold lower (k(cat)/K(m)) than that of the wild-type enzyme, the β-glucosidase activity is actually 3 times higher and the β-xylosidase activity is only 2.5-fold lower than the equivalent parameters for wild type, consistent with a role for Tyr(334) in recognition of the C6 position of GlcA. The involvement of Glu(45) in discriminating against binding of the O-methyl group at the C4 position of GlcA is revealed in the fact that the E45D mutant hydrolyzes PNP-β-GlcA approximately 300-fold slower (k(cat)/K(m)) than does the wild-type enzyme, whereas 4-O-methyl-GlcA-containing oligosaccharides are hydrolyzed only 7-fold slower.  相似文献   
93.
Cytokinesis is initiated by constriction of the cleavage furrow and terminated by abscission of the intercellular bridge that connects two separating daughter cells. The complicated processes of cytokinesis are coordinated by phosphorylation and dephosphorylation mediated by protein kinases and phosphatases. Mammalian Misshapen-like kinase 1 (MINK1) is a member of the germinal center kinases and is known to regulate cytoskeletal organization and oncogene-induced cell senescence. To search for novel regulators of cytokinesis, we performed a screen using a library of siRNAs and found that MINK1 was essential for cytokinesis. Time-lapse analysis revealed that MINK1-depleted cells were able to initiate furrowing but that abscission was disrupted. STRN4 (Zinedin) is a regulatory subunit of protein phosphatase 2A (PP2A) and was recently shown to be a component of a novel protein complex called striatin-interacting phosphatase and kinase (STRIPAK). Mass spectrometry analysis showed that MINK1 was a component of STRIPAK and that MINK1 directly interacted with STRN4. Similar to MINK1 depletion, STRN4-knockdown induced multinucleated cells and inhibited the completion of abscission. In addition, STRN4 reduced MINK1 activity in the presence of catalytic and structural subunits of PP2A. Our study identifies a novel regulatory network of protein kinases and phosphatases that regulate the completion of abscission.  相似文献   
94.
ZFAT, originally identified as a candidate susceptibility gene for autoimmune thyroid disease, has been reported to be involved in apoptosis, development and primitive hematopoiesis. Zfat is highly expressed in T- and B-cells in the lymphoid tissues, however, its physiological function in the immune system remains totally unknown. Here, we generated the T cell-specific Zfat-deficient mice and demonstrated that Zfat-deficiency leads to a remarkable reduction in the number of the peripheral T cells. Intriguingly, a reduced expression of IL-7Rα and the impaired responsiveness to IL-7 for the survival were observed in the Zfat-deficient T cells. Furthermore, a severe defect in proliferation and increased apoptosis in the Zfat-deficient T cells following T cell receptor (TCR) stimulation was observed with a reduced IL-2Rα expression as well as a reduced IL-2 production. Thus, our findings reveal that Zfat is a critical regulator in peripheral T cell homeostasis and its TCR-mediated response.  相似文献   
95.
Ogata S  Miki T  Seino S  Tamai S  Kasai H  Nemoto T 《PloS one》2012,7(5):e37048
Noc2, a putative Rab effector, contributes to secretory-granule exocytosis in neuroendocrine and exocrine cells. Here, using two-photon excitation live-cell imaging, we investigated its role in Ca(2+)-dependent zymogen granule (ZG) exocytosis in pancreatic acinar cells from wild-type (WT) and Noc2-knockout (KO) mice. Imaging of a KO acinar cell revealed an expanded granular area, indicating ZG accumulation. In our spatiotemporal analysis of the ZG exocytosis induced by agonist (cholecystokinin or acetylcholine) stimulation, the location and rate of progress of ZG exocytosis did not differ significantly between the two strains. ZG exocytosis from KO acinar cells was seldom observed at physiological concentrations of agonists, but was normal (vs. WT) at high concentrations. Flash photolysis of a caged calcium compound confirmed the integrity of the fusion step of ZG exocytosis in KO acinar cells. The decreased ZG exocytosis present at physiological concentrations of agonists raised the possibility of impaired elicitation of calcium spikes. When calcium spikes were evoked in KO acinar cells by a high agonist concentration: (a) they always started at the apical portion and traveled to the basal portion, and (b) calcium oscillations over the 10 μM level were observed, as in WT acinar cells. At physiological concentrations of agonists, however, sufficient calcium spikes were not observed, suggesting an impaired [Ca(2+)](i)-increase mechanism in KO acinar cells. We propose that in pancreatic acinar cells, Noc2 is not indispensable for the membrane fusion of ZG per se, but instead performs a novel function favoring agonist-induced physiological [Ca(2+)](i) increases.  相似文献   
96.
97.
An aqueous solution of glucose was reacted at temperatures from 200 to 400 degrees C under atmospheric pressure using a continuous flow reactor. For reaction temperatures above 300 degrees C, the liquid product yield was not sensitive to the temperature change; on the other hand, below 300 degrees C, it decreased rapidly with decreasing temperature. 1,6-Anhydro-beta-D-glucopyranose (AGP) and 1,6-anhydro-beta-D-glucofuranose (AGF) were the major components in the liquid product. The yields of AGP and AGF were 40% and 19%, respectively, at 360 degrees C and a feed rate of 0.5 mL/min. The optimum space time to produce AGP and AGF was about 0.2-0.4s under the present temperature conditions.  相似文献   
98.
Nagy L  Maróti P  Terazima M 《FEBS letters》2008,582(25-26):3657-3662
Spectrally silent conformation change after photoexcitation of photosynthetic reaction centers isolated from Rhodobacter sphaeroides R-26 was observed by the optical heterodyne transient grating technique. The signal showed spectrally silent structural change in photosynthetic reaction centers followed by the primary P+BPh- charge separation and this change remains even after the charge recombination. Without bound quinone to the RC, the conformation change relaxes with about 28micros lifetime. The presence of quinone at the primary quinone (QA) site may suppress this conformation change. However, a weak relaxation with 30-40micros lifetime is still observed under the presence of QA, which increases up to 40micros as a function of the occupancy of the secondary quinone (QB) site.  相似文献   
99.
Yagame T  Yamato M  Suzuki A  Iwase K 《Mycorrhiza》2008,18(2):97-101
Mycorrhizal fungi were isolated from the nonphotosynthetic orchid Chamaegastrodia sikokiana and identified as members of Ceratobasidiaceae by phylogenetic analysis of the internal transcribed spacer (ITS) region of ribosomal deoxyribonucleic acid. The ITS sequences were similar among geographically separated samples obtained from Mt. Kiyosumi in Chiba Prefecture and Mt. Yokokura in Kochi Prefecture. One of the isolated fungi, KI1-2, formed ectomycorrhiza on seedlings of Abies firma in pot culture, suggesting that tripartite symbiosis exists among C. sikokiana, mycorrhizal fungi, and A. firma in nature, and carbon compounds are supplied from A. firma to C. sikokiana through the hyphae of the mycorrhizal fungi. To our knowledge, this is the second study to suggest the involvement of Ceratobasidiaceae fungi in tripartite symbiosis with achlorophyllous orchids and photosynthetic host plants.  相似文献   
100.
A community of arbuscular mycorrhizal (AM) fungi was investigated in a warm-temperate deciduous broad-leaved forest using a molecular analysis method. Root samples were obtained from the forest, and DNA was extracted from the samples. Partial 18S rDNA of AM fungi were amplified from the extracted DNA by polymerase chain reaction using a universal eukaryotic primer NS31 and an AM fungal-specific primer AM1. After cloning the PCR products, 394 clones were obtained in total, which were divided into five types by restriction fragment length polymorphism (RFLP) with HinfI, RsaI, and Hsp92II. More than 20% of the clones were randomly selected from each RFLP type and sequenced. Phylogenetic analysis showed that all the obtained clones belonged to Glomus but could not be identified at species level. Topsoil of the forest containing plant roots was inoculated to nonmycorrhizal seedlings of indigenous woody plants, Rhus javanica var. roxburghii and Clethra barvinervis, to introduce the community of AM fungi into the seedlings. Among these five RFLP types, four types were detected from both seedlings, which indicates that the AM fungal community in the forest root samples was introduced at least partly into the seedlings. Meanwhile, an additional four types that were not found in the forest root samples were newly detected in the seedlings, these types were closely related to one another and close to G. fasciculatum or G. intraradices. It is expected that a community of indigenous diverse AM fungi could be introduced into target fields by planting these mycorrhizal seedlings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号