首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1118篇
  免费   54篇
  国内免费   3篇
  2022年   10篇
  2021年   16篇
  2020年   5篇
  2019年   15篇
  2018年   28篇
  2017年   18篇
  2016年   19篇
  2015年   39篇
  2014年   35篇
  2013年   84篇
  2012年   57篇
  2011年   60篇
  2010年   36篇
  2009年   34篇
  2008年   80篇
  2007年   65篇
  2006年   78篇
  2005年   62篇
  2004年   52篇
  2003年   65篇
  2002年   61篇
  2001年   15篇
  2000年   12篇
  1999年   19篇
  1998年   13篇
  1997年   9篇
  1996年   4篇
  1995年   14篇
  1994年   9篇
  1993年   10篇
  1992年   14篇
  1991年   9篇
  1990年   10篇
  1989年   4篇
  1988年   8篇
  1987年   9篇
  1986年   7篇
  1985年   9篇
  1984年   7篇
  1983年   9篇
  1982年   15篇
  1981年   8篇
  1980年   3篇
  1979年   3篇
  1978年   5篇
  1977年   4篇
  1976年   6篇
  1975年   7篇
  1973年   2篇
  1969年   3篇
排序方式: 共有1175条查询结果,搜索用时 15 毫秒
951.
Plant cytochromes P450 (P450s) participate in a variety of biochemical pathways to produce a vast diversity of plant natural products. The number of P450 genes in plant genomes is estimated to be up to 1% of the total gene annotations of each plant species, implying that plants are huge sources for various P450-dependent reactions. Plant P450s catalyze a wide variety of monooxygenation/hydroxylation reactions in secondary metabolism, and some of them are involved in unusual reactions such as methylenedioxy-bridge formation, phenol coupling reactions, oxidative rearrangement of carbon skeletons, and oxidative C–C bond cleavage. Here, we summarize unusual P450 reactions in various plant secondary metabolisms, and describe their proposed reaction mechanisms.  相似文献   
952.
Based on 203 specimens belonging to the Rhinolophus "pusillus group" (Mammalia: Chiroptera: Rhinolophidae), univariate and multivariate morphometric analyses using 19 characters were performed to assess the confused species taxonomy. The results indicated that R. pusillus (including calidus, parcus, and szechuanus) in the continental region and Hainan Island of China and "R. cornutus" in Japan are morphologically divergent species. Rhinolophus cornutus should be further split into R. cornutus (including orii, pumilus, and miyakonis) in the main islands of Japan, the Amami and Okinawa Group of the central Ryukyu Archipelago, and Miyako Group of the southern Ryukyus; and R. perditus and R. imaizumii from the Yaeyama Group in the southern Ryukyus. Rhinolophus monoceros from Taiwan is morphologically more similar to species in Japan than to R. pusillus. In addition to R. pusillus, another form that is morphologically similar to species in Japan was recognized from Langzhong in Sichuan Province; this may represent an undescribed species, and further examination is necessary to determine its taxonomic status. Specimens from Guang'an in Sichuan Province, China, are also different from the others, and are characterized by the smallest skull size. Although further studies are required, these specimens were tentatively identified as R. subbadius.  相似文献   
953.

Introduction

Treatment-related death (TRD) remains a serious problem in small-cell lung cancer (SCLC), despite recent improvements in supportive care. However, few studies have formally assessed time trends in the proportion of TRD over the past two decades. The aim of this study was to determine the frequency and pattern of TRD over time.

Methods

We examined phase 3 trials conducted between 1990 and 2010 to address the role of systemic treatment for SCLC. The time trend was assessed using linear regression analysis.

Results

In total, 97 trials including nearly 25,000 enrolled patients were analyzed. The overall TRD proportion was 2.95%. Regarding the time trend, while it was not statistically significant, it tended to decrease, with a 0.138% decrease per year and 2.76% decrease per two decades. The most common cause of death was febrile neutropenia without any significant time trend in its incidence over the years examined (p = 0.139). However, deaths due to febrile neutropenia as well as all causes in patients treated with non-platinum chemotherapy increased significantly (p = 0.033).

Conclusions

The overall TRD rate has been low, but not negligible, in phase III trials for SCLC over the past two decades.  相似文献   
954.
Infection of macrophages with bacteria induces the production of pro-inflammatory cytokines including TNF-α. TNF-α directly stimulates osteoclast differentiation from bone marrow macrophages in vitro as well as indirectly via osteoblasts. Recently, it was reported that bacterial components such as LPS inhibited RANKL-induced osteoclastogenesis in early stages, but promoted osteoclast differentiation in late stages. However, the contribution to osteoclast differentiation of TNF-α produced by infected macrophages remains unclear. We show here that Porphyromonas gingivalis, one of the major pathogens in periodontitis, directly promotes osteoclastogenesis from RANKL-primed RAW-D (subclone of RAW264) mouse macrophages, and we show that TNF-α is not involved in the stimulatory effect on osteoclastogenesis. P. gingivalis infection of RANKL-primed RAW-D macrophages markedly stimulated osteoclastogenesis in a RANKL-independent manner. In the presence of the TLR4 inhibitor, polymyxin B, infection of RANKL-primed RAW-D cells with P. gingivalis also induced osteoclastogenesis, indicating that TLR4 is not involved. Infection of RAW-D cells with P. gingivalis stimulated the production of TNF-α, whereas the production of TNF-α by similarly infected RANKL-primed RAW-D cells was markedly down-regulated. In addition, infection of RANKL-primed macrophages with P. gingivalis induced osteoclastogenesis in the presence of neutralizing antibody against TNF-α. Inhibitors of NFATc1 and p38MAPK, but not of NF-κB signaling, significantly suppressed P. gingivalis-induced osteoclastogenesis from RANKL-primed macrophages. Moreover, re-treatment of RANKL-primed macrophages with RANKL stimulated osteoclastogenesis in the presence or absence of P. gingivalis infection, whereas re-treatment of RANKL-primed macrophages with TNF-α did not enhance osteoclastogenesis in the presence of live P. gingivalis. Thus, P. gingivalis infection of RANKL-primed macrophages promoted osteoclastogenesis in a TNF-α independent manner, and RANKL but not TNF-α was effective in inducing osteoclastogenesis from RANKL-primed RAW-D cells in the presence of P. gingivalis.  相似文献   
955.
Rubrerythrin (Rbr) is a non-heme iron protein composed of two distinctive domains and functions as a peroxidase in anaerobic organisms. A novel Rbr-like protein, ferriperoxin (Fpx), was identified in Hydrogenobacter thermophilus and was found not to possess the rubredoxin-like domain that is present in typical Rbrs. Although this protein is widely distributed among aerobic organisms, its function remains unknown. In this study, Fpx exhibited ferredoxin:NADPH oxidoreductase (FNR)-dependent peroxidase activity and reduced both hydrogen peroxide (H(2)O(2)) and organic hydroperoxide in the presence of NADPH and FNR as electron donors. The calculated K(m) and V(max) values of Fpx for organic hydroperoxides were comparable to that for H(2)O(2), demonstrating a multiple reactivity of Fpx towards hydroperoxides. An fpx gene disruptant was unable to grow under aerobic conditions, whereas its growth profiles were comparable to those of the wild-type strain under anaerobic and microaerobic conditions, clearly indicating the indispensability of Fpx as an antioxidant of H. thermophilus in aerobic environments. Structural analysis suggested that domain-swapping occurs in Fpx, and this domain-swapped structure is well conserved among thermophiles, implying the importance of structural stability of domain-swapped conformation for thermal environments. In addition, Fpx was located on a deep branch of the phylogenetic tree of Rbr and Rbr-like proteins. This finding, taken together with the wide distribution of Fpx among Bacteria and Archaea, suggests that Fpx is an ancestral type of Rbr homolog that functions as an essential antioxidant and may be part of an ancestral peroxide-detoxification system.  相似文献   
956.
957.
Brassinosteroids (BRs) are steroidal phytohormones that regulate plant growth and development. Whereas in Arabidopsis the network-like routes of BR biosynthesis have been elucidated in considerable detail, the roles of some of the biosynthetic enzymes and their participation in the different subpathways remained to be clarified. We investigated the function of the cytochrome P450 monooxygenase CYP90A1/CPD, which earlier had been proposed to act as a BR C-23 hydroxylase. Our GC-MS and genetic analyses demonstrated that the cpd mutation arrests BR synthesis upstream of the DET2-mediated 5α reduction step and that overexpression of the C-23 hydroxylase CYP90C1 does not alleviate BR deficiency in the cpd mutant. In line with these results, we found that CYP90A1/CPD heterologously expressed in a baculovirus-insect cell system catalyzes C-3 oxidation of the early BR intermediates (22S)-22-hydroxycampesterol and (22R,23R)-22,23-dihydroxycampesterol, as well as of 6-deoxocathasterone and 6-deoxoteasterone. Enzyme kinetic data of CYP90A1/CPD and DET2, together with those of the earlier studied CYP90B1, CYP90C1, and CYP90D1, suggest that BR biosynthesis proceeds mainly via the campestanol-independent pathway.  相似文献   
958.

Background

Fyn tyrosine kinase-mediated down-regulation of Rho activity through activation of p190RhoGAP is crucial for oligodendrocyte differentiation and myelination. Therefore, the loss of function of its counterpart protein tyrosine phosphatase (PTP) may enhance myelination during development and remyelination in demyelinating diseases. To test this hypothesis, we investigated whether Ptprz, a receptor-like PTP (RPTP) expressed abuntantly in oligodendrocyte lineage cells, is involved in this process, because we recently revealed that p190RhoGAP is a physiological substrate for Ptprz.

Methodology/Principal Findings

We found an early onset of the expression of myelin basic protein (MBP), a major protein of the myelin sheath, and early initiation of myelination in vivo during development of the Ptprz-deficient mouse, as compared with the wild-type. In addition, oligodendrocytes appeared earlier in primary cultures from Ptprz-deficient mice than wild-type mice. Furthermore, adult Ptprz-deficient mice were less susceptible to experimental autoimmune encephalomyelitis (EAE) induced by active immunization with myelin/oligodendrocyte glycoprotein (MOG) peptide than were wild-type mice. After EAE was induced, the tyrosine phosphorylation of p190RhoGAP increased significantly, and the EAE-induced loss of MBP was markedly suppressed in the white matter of the spinal cord in Ptprz-deficient mice. Here, the number of T-cells and macrophages/microglia infiltrating into the spinal cord did not differ between the two genotypes after MOG immunization. All these findings strongly support the validity of our hypothesis.

Conclusions/Significance

Ptprz plays a negative role in oligodendrocyte differentiation in early central nervous system (CNS) development and remyelination in demyelinating CNS diseases, through the dephosphorylation of substrates such as p190RhoGAP.  相似文献   
959.

Background

Acetamiprid (ACE) and imidacloprid (IMI) belong to a new, widely used class of pesticide, the neonicotinoids. With similar chemical structures to nicotine, neonicotinoids also share agonist activity at nicotinic acetylcholine receptors (nAChRs). Although their toxicities against insects are well established, their precise effects on mammalian nAChRs remain to be elucidated. Because of the importance of nAChRs for mammalian brain function, especially brain development, detailed investigation of the neonicotinoids is needed to protect the health of human children. We aimed to determine the effects of neonicotinoids on the nAChRs of developing mammalian neurons and compare their effects with nicotine, a neurotoxin of brain development.

Methodology/Principal Findings

Primary cultures of cerebellar neurons from neonatal rats allow for examinations of the developmental neurotoxicity of chemicals because the various stages of neurodevelopment—including proliferation, migration, differentiation, and morphological and functional maturation—can be observed in vitro. Using these cultures, an excitatory Ca2+-influx assay was employed as an indicator of neural physiological activity. Significant excitatory Ca2+ influxes were evoked by ACE, IMI, and nicotine at concentrations greater than 1 µM in small neurons in cerebellar cultures that expressed the mRNA of the α3, α4, and α7 nAChR subunits. The firing patterns, proportion of excited neurons, and peak excitatory Ca2+ influxes induced by ACE and IMI showed differences from those induced by nicotine. However, ACE and IMI had greater effects on mammalian neurons than those previously reported in binding assay studies. Furthermore, the effects of the neonicotinoids were significantly inhibited by the nAChR antagonists mecamylamine, α-bungarotoxin, and dihydro-β-erythroidine.

Conclusions/Significance

This study is the first to show that ACE, IMI, and nicotine exert similar excitatory effects on mammalian nAChRs at concentrations greater than 1 µM. Therefore, the neonicotinoids may adversely affect human health, especially the developing brain.  相似文献   
960.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号