首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1724篇
  免费   99篇
  国内免费   1篇
  2023年   3篇
  2022年   17篇
  2021年   26篇
  2020年   11篇
  2019年   19篇
  2018年   17篇
  2017年   17篇
  2016年   34篇
  2015年   48篇
  2014年   68篇
  2013年   83篇
  2012年   98篇
  2011年   124篇
  2010年   71篇
  2009年   56篇
  2008年   124篇
  2007年   105篇
  2006年   91篇
  2005年   97篇
  2004年   90篇
  2003年   107篇
  2002年   88篇
  2001年   29篇
  2000年   34篇
  1999年   29篇
  1998年   19篇
  1997年   9篇
  1996年   15篇
  1995年   20篇
  1994年   17篇
  1993年   22篇
  1992年   26篇
  1991年   31篇
  1990年   19篇
  1989年   24篇
  1988年   23篇
  1987年   14篇
  1986年   15篇
  1985年   8篇
  1984年   12篇
  1983年   10篇
  1982年   6篇
  1981年   5篇
  1980年   6篇
  1979年   11篇
  1977年   4篇
  1975年   3篇
  1967年   2篇
  1965年   2篇
  1915年   2篇
排序方式: 共有1824条查询结果,搜索用时 296 毫秒
61.
Notochord is an embryonic midline structure that serves as mechanical support for axis elongation and the signaling center for the surrounding tissues. Precursors of notochord are initially induced in the dorsal most mesoderm region in gastrulating embryo and separate from the surrounding mesoderm/endoderm tissue to form an elongated rod-like structure, suggesting that cell adhesion molecules may play an important role in this step. In Xenopus embryo, axial protocadherin (AXPC), an orthologue of mammalian Protocadherin-1 (PCDH1), is indispensable for the assembly and separation from the surrounding tissue of the notochord cells. However, the role of PCDH1 in mammalian notochord remains unknown. We herein report that PCDH1 is expressed in the notochord of mouse embryo and that PCDH1-deficient mice form notochord normally. First, we examined the temporal expression pattern of pcdh1 and found that pcdh1 mRNA was expressed from embryonic day (E) 7.5, prior to the stage when notochord cells detach from the surrounding endoderm tissue. Second, we found that PCDH1 protein is expressed in the notochord of mouse embryos in addition to the previously reported expression in endothelial cells. To further investigate the role of PCDH1 in embryonic development, we generated PCDH1-deficient mice using the CRISPR-Cas9 system. In PCDH1-deficient embryos, notochord formation and separation from the surrounding tissue were normal. Structure and marker gene expression of notochord were also unaffected by loss of PCDH1. Major vascular patterns in PCDH1-deficient embryo were essentially normal. These results suggest that PCDH1 is dispensable for notochord formation, including the tissue separation process, in mammalian embryos. We successfully identified the evolutionary conserved expression of PCDH1 in notochord, but its function may differ among species.  相似文献   
62.
The choice of treatment for primary nephrotic syndrome depends on the pathologic type of the disorder. Renal biopsy is necessary for a definitive diagnosis, but it is burdensome for the patients, and can be avoided if tests could be performed using urine or plasma. In this study, we analyzed 100 urinary proteins, 141 plasma proteins, and 57 urine/plasma ratios in cases of diabetic nephropathy (DN; n = 11), minimal change nephrotic syndrome (MCNS; n = 14), and membranous nephropathy (MN; n = 23). We found that the combination of urinary retinol-binding protein 4 and SH3 domain-binding glutamic acid-rich-like protein 3 could distinguish between MCNS and DN, with an area under the curve (AUC) of 0.9740. On the other hand, a selectivity index (SI) based on serotransferrin and immunoglobulin G, which is often used in clinical practice, distinguished them with an AUC of 0.9091. Similarly, the combination of urinary afamin and complement C3 urine/plasma ratio could distinguish between MN and DN with an AUC of 0.9842, while SI distinguished them with an AUC of 0.8538. Evidently, the candidates identified in this study were superior to the SI method. Thus, the aim was to test these biomarkers for accurate diagnosis and to greatly reduce the burden on patients.  相似文献   
63.
The cell cycle plays an important role in the development and adaptation of multicellular organisms; specifically, it allows them to optimally adjust their architecture in response to environmental changes. Kip-related proteins (KRPs) are important negative regulators of cyclin-dependent kinases (CDKs), which positively control the cell cycle during plant development. The Arabidopsis genome possesses seven KRP genes with low sequence similarity and distinct expression patterns; however, why Arabidopsis needs seven KRP genes and how these genes function in cell cycle regulation are unknown. Here, we focused on the characterization of KRP3, which was found to have unique functions in the shoot apical meristem (SAM) and leaves. KRP3 protein was localized to the SAM, including the ground meristem and vascular tissues in the ground part of the SAM and cotyledons. In addition, KRP3 protein was stabilized when treated with MG132, an inhibitor of the 26S proteasome, indicating that the protein may be regulated by 26S proteasome-mediated protein degradation. KRP3-overexpressing (KRP3 OE) transgenic plants showed reduced organ size, serrated leaves, and reduced fertility. Interestingly, the KRP3 OE transgenic plants showed a significant reduction in the size of the SAM with alterations in cell arrangement. In addition, compared to the wild type, the KRP3 OE transgenic plants had a higher DNA ploidy level in the SAM and leaves. Taken together, our data suggest that KRP3 plays important regulatory roles in the cell cycle and endoreduplication in the SAM and leaves.  相似文献   
64.
The aim of this study is to evaluate oxidative stress in man after paraquat ingestion by analyzing 7 &#102 - and 7 &#103 -hydroperoxycholest-5-en-3 &#103 -ol (7 &#102 - and 7 &#103 -OOH) as well as oxysterols, cholesterol oxidation products, as indices of lipid peroxidation. Lung, kidney, and liver were collected at autopsy from seven patients with paraquat poisoning and seven controls matched for age and sex. We identified for the first time 7-ketocholesterol (7-keto) and 7-hydroxycholesterol (7 &#102 -OH and 7 &#103 -OH) in human kidney by LC-MS. Next, we quantified 7 &#102 -OOH and 7 &#103 -OOH by HPLC with postcolumn chemiluminescence as well as oxysterols by HPLC-UV. Both 7 &#102 -OOH and 7 &#103 -OOH detected in lung and kidney from the controls were as low as the paraquat group. In contrast, we found both 7-keto and 7 &#103 -OH in lung and 7-keto in kidney from the paraquat group were significantly higher than from the controls. This is the first report on accumulated oxysterols in lung and kidney from human paraquat poisoning. It seems to reflect greater oxidative stress in the pathology of paraquat intoxication.  相似文献   
65.
We assessed the association of neutrophil function with glycated hemoglobin (HbA1c) levels in a Japanese general population. Participants were 809 males and females who were over 20 years old living in the Iwaki region in Aomori Prefecture located in northern Japan. Lifestyle parameters (smoking, alcohol consumption, and exercise habits), HbA1c and neutrophil function such as reactive oxygen species (ROS) production capability and phagocytic activity (PA) were measured. ROS production capability was measured before and after phagocytic stimulus to obtain basal ROS production and stimulated ROS production. Level of HbA1c had a positive correlation with basal ROS production (p=0.053), a negative correlation with stimulated ROS production (p=0.072) and PA (p=0.059) only in post‐menopausal groups, and not in pre‐menopausal groups. However, there were no correlations between levels of HbA1c and neutrophil functions in male. In conclusion, in the present study, despite the presence of diabetes, chronic hyperglycemia was found to cause an increase in daily basal ROS production of neutrophils, and increased susceptibility to infection caused by reduced neutrophilic reaction in females in their menopause. Therefore, from the oxidative point of view, strict glycemic control is necessary to prevent post‐menopausal females from developing diabetic complications in spite of the presence of diabetes.  相似文献   
66.
Highlights? Modified small-scale ChIP-seq method applicable to small number of cells ? Genome-wide maps of H3K4me3, H3K27me3, H3K27ac, and H2BK20ac of germ cells in vivo ? Identification of active and inactive regulatory elements in germ cells in vivo ? Germ cell H3K27me3 regions are enriched for retrotransposon repeats  相似文献   
67.
The sense of agency is the attribution of oneself as the cause of one’s own actions and their effects. Accurate agency judgments are essential for adaptive behaviors in dynamic environments, especially in conditions of uncertainty. However, it is unclear how agency judgments are made in ambiguous situations where self-agency and non-self-agency are both possible. Agency attribution is thus thought to require higher-order neurocognitive processes that integrate several possibilities. Furthermore, neural activity specific to self-attribution, as compared with non-self-attribution, may reflect higher-order critical operations that contribute to constructions of self-consciousness. Based on these assumptions, the present study focused on agency judgments under ambiguous conditions and examined the neural correlates of this operation with functional magnetic resonance imaging. Participants performed a simple but demanding agency-judgment task, which required them to report on whether they attributed their own action as the cause of a visual stimulus change. The temporal discrepancy between the participant’s action and the visual events was adaptively set to be maximally ambiguous for each individual on a trial-by-trial basis. Comparison with results for a control condition revealed that the judgment of agency was associated with activity in lateral temporo-parietal areas, medial frontal areas, the dorsolateral prefrontal area, and frontal operculum/insula regions. However, most of these areas did not differentiate between self- and non-self-attribution. Instead, self-attribution was associated with activity in posterior midline areas, including the precuneus and posterior cingulate cortex. These results suggest that deliberate self-attribution of an external event is principally associated with activity in posterior midline structures, which is imperative for self-consciousness.  相似文献   
68.
Plant organ growth is controlled by inter-cell-layer communication, which thus determines the overall size of the organism. The epidermal layer interfaces with the environment and participates in both driving and restricting growth via inter-cell-layer communication. However, it remains unknown whether the epidermis can send signals to internal tissue to limit cell proliferation in determinate growth. Very-long-chain fatty acids (VLCFAs) are synthesized in the epidermis and used in the formation of cuticular wax. Here we found that VLCFA synthesis in the epidermis is essential for proper development of Arabidopsis thaliana. Wild-type plants treated with a VLCFA synthesis inhibitor and pasticcino mutants with defects in VLCFA synthesis exhibited overproliferation of cells in the vasculature or in the rib zone of shoot apices. The decrease of VLCFA content increased the expression of IPT3, a key determinant of cytokinin biosynthesis in the vasculature, and, indeed, elevated cytokinin levels. These phenotypes were suppressed in ipt3;5;7 triple mutants, and also by vasculature-specific expression of cytokinin oxidase, which degrades active forms of cytokinin. Our results imply that VLCFA synthesis in the epidermis is required to suppress cytokinin biosynthesis in the vasculature, thus fine-tuning cell division activity in internal tissue, and therefore that shoot growth is controlled by the interaction between the surface (epidermis) and the axis (vasculature) of the plant body.  相似文献   
69.
Tcl1 is highly expressed in embryonic stem (ES) cells, but its expression rapidly decreases following differentiation. To assess Tcl1’s roles in ES cells, we generated Tcl1-deficient and -overexpressing mouse ES cell lines. We found that Tcl1 was neither essential nor sufficient for maintaining the undifferentiated state. Tcl1 is reported to activate Akt and to enhance cell proliferation. We found that Tcl1 expression levels correlated positively with the proliferation rate and negatively with the apoptosis of ES cells, but did not affect Akt phosphorylation. On the other hand, the phosphorylation level of β-catenin decreased in response to Tcl1 overexpression. We measured the β-catenin activity using the TOPflash reporter assay, and found that wild-type ES cells had low activity, which Tcl1 overexpression enhanced 1.8-fold. When the canonical Wnt signaling is activated by β-catenin stabilization, it reportedly helps maintain ES cells in the undifferentiated state. We then performed DNA microarray analyses between the Tcl1-deficient and -expressing ES cells. The results revealed that Tcl1 expression downregulated a distinct group of genes, including Ndp52, whose expression is very high in blastocysts but reduced in the primitive ectoderm. Based on these results, we discuss the possible roles of Tcl1 in ES cells.  相似文献   
70.
VE-cadherin and claudin-5 are major components of adherens and tight junctions of vascular endothelial cells and a decrease in their expression and an increase in the tyrosine-phosphorylation of VE-cadherin are associated with an increase in endothelial paracellular permeability. To clarify the mechanism underlying the development of edema in nasal polyps, we studied these molecules in polyp microvessels. Normal inferior turbinate mucosal tissues and nasal polyps from patients treated with or without glucocorticoid were stained for VE-cadherin or claudin-5 and CD31 by a double-immunofluorescence method and the immunofluorescence intensities were graded 1–3 with increasing intensity. To correct for differences in fluorescence intensity attributable to a different endothelial area being exposed in a section or to the thickness of a section, the relative immunofluorescence intensity was estimated by dividing the grade of VE-cadherin or claudin-5 by that of CD31 in each microvessel. Tyrosine-phosphorylation of VE-cadherin was examined by Western blot analysis. The relative intensities of VE-cadherin and claudin-5 in the CD31-positive microvessels significantly decreased in the following order; inferior turbinate mucosa, treated polyps and untreated polyps. The ratio of tyrosine-phosphorylated VE-cadherin to VE-cadherin was significantly higher in untreated polyps than in the inferior turbinate mucosa and treated polyps, between which no significant difference in the ratio was seen. Thus, in nasal polyps, the barrier function of endothelial adherens and tight junctions is weakened, although glucocorticoid treatment improves this weakened barrier function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号