首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1724篇
  免费   100篇
  国内免费   1篇
  1825篇
  2023年   3篇
  2022年   18篇
  2021年   26篇
  2020年   11篇
  2019年   19篇
  2018年   17篇
  2017年   17篇
  2016年   34篇
  2015年   48篇
  2014年   68篇
  2013年   83篇
  2012年   98篇
  2011年   124篇
  2010年   71篇
  2009年   56篇
  2008年   124篇
  2007年   105篇
  2006年   91篇
  2005年   97篇
  2004年   90篇
  2003年   107篇
  2002年   88篇
  2001年   29篇
  2000年   34篇
  1999年   29篇
  1998年   19篇
  1997年   9篇
  1996年   15篇
  1995年   20篇
  1994年   17篇
  1993年   22篇
  1992年   26篇
  1991年   31篇
  1990年   19篇
  1989年   24篇
  1988年   23篇
  1987年   14篇
  1986年   15篇
  1985年   8篇
  1984年   12篇
  1983年   10篇
  1982年   6篇
  1981年   5篇
  1980年   6篇
  1979年   11篇
  1977年   4篇
  1975年   3篇
  1967年   2篇
  1965年   2篇
  1915年   2篇
排序方式: 共有1825条查询结果,搜索用时 0 毫秒
11.
In this study, we have structurally characterized the amidase of a nitrile-degrading bacterium, Rhodococcus sp. N-771 (RhAmidase). RhAmidase belongs to amidase signature (AS) family, a group of amidase families, and is responsible for the degradation of amides produced from nitriles by nitrile hydratase. Recombinant RhAmidase exists as a dimer of about 107 kDa. RhAmidase can hydrolyze acetamide, propionamide, acrylamide and benzamide with kcat/Km values of 1.14 ± 0.23 mM− 1s− 1, 4.54 ± 0.09 mM− 1s− 1, 0.087 ± 0.02 mM− 1s− 1 and 153.5 ± 7.1 mM− 1s− 1, respectively. The crystal structures of RhAmidase and its inactive mutant complex with benzamide (S195A/benzamide) were determined at resolutions of 2.17 Å and 2.32 Å, respectively. RhAmidase has three domains: an N-terminal α-helical domain, a small domain and a large domain. The N-terminal α-helical domain is not found in other AS family enzymes. This domain is involved in the formation of the dimer structure and, together with the small domain, forms a narrow substrate-binding tunnel. The large domain showed high structural similarities to those of other AS family enzymes. The Ser-cis Ser-Lys catalytic triad is located in the large domain. But the substrate-binding pocket of RhAmidase is relatively narrow, due to the presence of the helix α13 in the small domain. The hydrophobic residues from the small domain are involved in recognizing the substrate. The small domain likely participates in substrate recognition and is related to the difference of substrate specificities among the AS family amidases.  相似文献   
12.
Prefoldin is a jellyfish-shaped hexameric chaperone that captures a protein-folding intermediate and transfers it to the group II chaperonin for correct folding. In this work, we characterized the organic solvent tolerance of Escherichia coli cells that overexpress prefoldin and group II chaperonin from a hyperthermophilic archeaum, Pyrococcus horikoshii OT3. The colony-forming efficiency of E. coli cells overexpressing prefoldin increased by 1,000-fold and decreased the accumulation of intracellular organic solvent. The effect was impaired by deletions of the region responsible for the chaperone function of prefoldin. Therefore, we concluded that prefoldin endows E. coli cells by preventing accumulation of intracellular organic solvent through its molecular chaperone activity.  相似文献   
13.
We investigated sequence-specific DNA alkylation using conjugates between the N-methylpyrrole (Py)-N-methylimidazole (Im) polyamide and the DNA alkylating agent, chlorambucil, or 1-(chloromethyl)-5-hydroxy-1,2-dihydro-3H-benz[e]indole (seco-CBI). Polyamide–chlorambucil conjugates 14 differed in the position at which the DNA alkylating chlorambucil moiety was bound to the Py–Im polyamide. High-resolution denaturing polyacrylamide gel electrophoresis (PAGE) revealed that chlorambucil conjugates 14 alkylated DNA at the sequences recognized by the Py–Im polyamide core moiety. Reactivity and sequence specificity were greatly affected by the conjugation position, which reflects the geometry of the alkylating agent in the DNA minor groove. Polyamide–seco-CBI conjugate 5 was synthesized to compare the efficacy of chlorambucil with that of seco-CBI as an alkylating moiety for Py–Im polyamides. Denaturing PAGE analysis revealed that DNA alkylation activity of polyamide–seco-CBI conjugate 5 was similar to that of polyamide–chlorambucil conjugates 1 and 2. In contrast, the cytotoxicity of conjugate 5 was superior to that of conjugates 14. These results suggest that the seco-CBI conjugate was distinctly active in cells compared to the chlorambucil conjugates. These results may contribute to the development of more specific and active DNA alkylating agents.  相似文献   
14.
Matsui M  Yambun P  Sudin A 《Zoological science》2007,24(11):1159-1166
Examination of types and recently collected specimens revealed that Ansonia anotis Inger, Tan, and Yambun, 2001 and Pedostibes maculatus (Mocquard, 1890), both described from Kinabalu, Sabah, Malaysia, are hardly differentiated morphologically. Analyses of a total of 2,427 bp of the 12S rRNA, tRNA(val), and 16S mitochondrial rRNA genes revealed that the two species are very close genetically. Thus A. anotis is regarded as conspecific and is synonymized with P. maculatus. Genetically, this species proved to form a lineage distinct from other bufonids from Southeast Asia, including species of Ansonia and Pedostibes. Because the species has also some unique morphological traits different from known bufonid genera, we propose to establish a new genus for Nectophryne maculata Mocquard, 1890.  相似文献   
15.
Matsuo M 《IUBMB life》2002,53(3):147-152
Duchenne and Becker muscular dystrophy (DMD/BMD) are X-linked muscular dystrophies. The isolation of the defective gene in DMD/BMD has led to a better understanding of the disease process and has promoted studies regarding the application of molecular therapy. The purpose of this review is to present the progress made in this area of research with particular reference to dystrophin Kobe. Based on the results from the molecular analysis of dystrophin Kobe, we propose a novel molecular therapeutic method for DMD in which antisense oligonucleotides transform DMD into a milder phenotype by inducing exon skipping. In addition, current proposals for the molecular therapy of DMD are discussed.  相似文献   
16.
In recent years, the effects of smoking and excessive alcohol consumption on immune function have been studied, due to a high prevalence of infection or cancer in heavy drinkers, and the combination of smoking and drinking was considered to be a carcinogenic risk. However, the effect of smoking and drinking on systemic immune function has yet to be clearly understood. In this study, we investigated neutrophil functions (reactive oxygen species (ROS) productive activity, phagocytic ability and serum opsonic activity) and their relationship with alcohol consumption or amount of smoking. In total there were 731 male and female adult subjects who participated in the Iwaki Health Promotion Project in 2005. Multiple regression analysis showed a trend of increased ROS production in male subjects and a statistically significant decrease was observed in phagocytic activity caused by smoking in female subjects. In other words, oxidative stress caused by smoking in male subjects may be involved in ROS production from neutrophils. Decreased phagocytic activity of neutrophils caused by smoking suggests that host defense functions were impaired in female subjects. A relationship between neutrophil functions and the amount of alcohol consumption was not observed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
17.
Functional assembly of the Helicobacter pylori Na+/H+ antiporter (HPNhaA) from partial fragments was studied. Expression plasmids encoding a series of complementary N- and C-terminal fragment pairs containing the transmembrane domains (TMs) were constructed by inserting a stop or a start codon into each of the loop regions of NhaA. HPNhaA fragments alone or complementary fragment pairs were expressed in DeltanhaA Escherichia coli, and fragment integration into the membrane and antiporter activity were measured. TM1-10, TM1-11, TM2-12, TM6-12, and TM10-12 were found in the membrane fraction, while the other fragments were not. While no single fragment displayed antiporter activity, simultaneous expression of fragments in certain pairs, such as TM1-2 + TM3-12, TM1-8 + TM9-12, or TM1-11 + TM12, reconstituted antiporter activity. With the exception of TM12, all of the fragments in the pairs were detected in the membrane. No single fragments expressed alone for these pairs were found in the membrane, except for TM1-11, suggesting that the interaction between the fragments in these pairs stabilized the fragments and enabled reconstitution of HPNhaA. We also found that the simultaneous expression of three complementary fragments (TM1-2 + TM3-8 + TM9-12) reconstituted HPNhaA activity. Other pairs that were found in the membrane (TM1-5 + TM6-12, TM1-10 + TM11-12, and TM1 + TM2-12) did not reconstitute antiporter activity, suggesting that they may not have the proper conformation. These results revealed that the ability to reconstitute antiporter activity depends on the split position in the loop regions and the interaction between complementary fragment pairs. We propose that formation of the active HPNhaA molecule is initiated by the interaction of short-lived intermediates and maintained by the increased stability of the intermediates within the resulting complex.  相似文献   
18.
Two cardiac myosin heavy chain cDNA clones, pMHC alpha 252 and pMHC beta 174, were constructed using rabbit ventricular mRNA isolated from adult thyrotoxic and normal hearts, respectively. The complete DNA sequences of the 2.2- and 1.4-kilobase inserts of pMHC beta 174 and pMHC alpha 252, respectively, were obtained. The 736 amino acids specified by pMHC beta 174 begin 439 (1.3 kilobases) residues from the heavy chain NH2 terminus and include a 400-amino acid segment of subfragment 1 and the entire subfragment 2 region. Clone pMHC alpha 252 encodes 465 amino acids encompassing all of subfragment 2 and a portion of light meromyosin. Comparison of these two clones revealed extensive sequence overlap which included 1107 nucleotides specifying a 369-amino acid segment corresponding to subfragment 2. Within this region 78 (7%) base and 32 (8.7%) amino acid mismatches were noted. These differences were clustered within discrete regions, with the subfragment 1/subfragment 2 junctional region being particularly divergent. Structural differences between pMHC alpha 252 and pMHC beta 174 indicate that these two clones represent two similar but distinct myosin heavy chain genes whose expression is responsible for ventricular myosin heavy chain isoforms alpha and beta, respectively. The derived amino acid sequences of both clones exhibit extensive homology (greater than 81%) with sequences obtained by direct analysis of adult rabbit skeletal muscle myosin heavy chain protein. The sequences corresponding to the subfragment 2 region are consistent with an alpha-helical conformation with a characteristic 7-residue periodicity in the linear distribution of nonpolar amino acids. Conversely, subfragment 1 sequences specified by pMHC beta 174 suggest a folded highly irregular structure.  相似文献   
19.
Growth of and hydrogen production by wild-type (WT) Rhodovulum sulfidophilum were compared with those by one of its mutants lacking the poly(3-hydroxybutyrate) (PHB) biosynthesis ability (PNM2). During phototrophic growth under aerobic conditions with fixed illumination, changes in the extinction coefficient and PHB content of WT and PNM2 cells revealed interference of light penetration by PHB. WT cells synthesized PHB at an early stage of the cultivation. PHB degradation after exhaustion of acetate during the cultivation of WT resulted in a decrease of the extinction coefficient. The hydrogen production rate under anaerobic conditions with fixed illumination was examined in WT and PNM2 cell suspensions at different densities. The hydrogen production rate was determined not by the light penetration but by the kinds of hydrogen donors and the density of suspension. The highest value of the rate of hydrogen production from PHB, 33.0 ml/l/h, was improved compared with 26.6 ml/l/h, which was the highest value in hydrogen production from succinate. Under the same illumination, conversion to hydrogen from PHB is more efficient than that from succinate, which is one of the best substrates for hydrogen production. These results suggest that the hydrogen production rate can be maximized in the hydrogen production system based on PHB degradation, which is achieved in high-density suspension under external-substrate-depleted conditions after aerobic cultivation in the presence of an excess amount of acetate.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号