全文获取类型
收费全文 | 3370篇 |
免费 | 192篇 |
国内免费 | 1篇 |
专业分类
3563篇 |
出版年
2022年 | 21篇 |
2021年 | 27篇 |
2020年 | 20篇 |
2019年 | 25篇 |
2018年 | 38篇 |
2017年 | 52篇 |
2016年 | 50篇 |
2015年 | 80篇 |
2014年 | 128篇 |
2013年 | 210篇 |
2012年 | 161篇 |
2011年 | 197篇 |
2010年 | 130篇 |
2009年 | 106篇 |
2008年 | 160篇 |
2007年 | 209篇 |
2006年 | 184篇 |
2005年 | 171篇 |
2004年 | 225篇 |
2003年 | 192篇 |
2002年 | 200篇 |
2001年 | 70篇 |
2000年 | 62篇 |
1999年 | 76篇 |
1998年 | 50篇 |
1997年 | 42篇 |
1996年 | 32篇 |
1995年 | 31篇 |
1994年 | 40篇 |
1993年 | 45篇 |
1992年 | 56篇 |
1991年 | 45篇 |
1990年 | 44篇 |
1989年 | 46篇 |
1988年 | 35篇 |
1987年 | 26篇 |
1986年 | 20篇 |
1985年 | 24篇 |
1984年 | 28篇 |
1983年 | 19篇 |
1982年 | 18篇 |
1981年 | 24篇 |
1980年 | 17篇 |
1979年 | 19篇 |
1978年 | 26篇 |
1977年 | 10篇 |
1975年 | 10篇 |
1974年 | 8篇 |
1973年 | 7篇 |
1969年 | 5篇 |
排序方式: 共有3563条查询结果,搜索用时 16 毫秒
71.
Identification by in vitro complementation of regions required for cell-invasive activity of Bordetella pertussis adenylate cyclase toxin 总被引:2,自引:0,他引:2
The adenylate cyclase toxin (CyaA) of Bordetella pertussis is a 1706-residue protein composed of an amino-terminal adenylate cyclase (AC) domain linked to a 1300-residue channel-forming RTX ( r epeats in t o x in) haemolysin. The toxin delivers its AC domain into a variety of eukaryotic cells and impairs cellular functions by catalysing unregulated synthesis of cAMP from intracellular ATP. We have examined toxin activities of a set of deletion derivatives of CyaA. The results indicate that CyaA does not have a dedicated target cell-binding domain and that structural integrity and co-operation of all domains, as well as the post-translational fatty acylation mediated by an accessory protein CyaC, are all essential for target cell association and toxin activity of CyaA. When tested individually, all toxin derivatives were inactive and impaired in the tight association with the target cell surface. However, pairs of constructs with non-overlapping deletions complemented each other in vitro and exhibited a partially restored cytotoxic activity. This suggests that at least a part of the active toxin may act in the form of dimers or higher oligomers. The complementation analysis revealed that the last 217 residues of CyaA, containing the unprocessed secretion signal, form an autonomous domain essential for toxin activity, and that the region from residue 624 to 780 may be directly involved in delivery of the AC toxin into cells. 相似文献
72.
Calmodulin‐like skin protein protects against spatial learning impairment in a mouse model of Alzheimer disease 下载免费PDF全文
Shinya Kusakari Mikiro Nawa Katsuko Sudo Masaaki Matsuoka 《Journal of neurochemistry》2018,144(2):218-233
73.
Hidetaka Sugihara Takatsugu Ishimoto Masayuki Watanabe Hiroshi Sawayama Masaaki Iwatsuki Yoshifumi Baba Yoshihiro Komohara Motohiro Takeya Hideo Baba 《PloS one》2013,8(11)
Bmi1 is overexpressed in a variety of human cancers including gastrointestinal cancer. The high expression level of Bmi1 protein is associated with poor prognosis of gastrointestinal cancer patients. On the other hand, tumor-associated macrophages (TAMs) contribute to tumor growth, invasion, and metastasis by producing various mediators in the tumor microenvironment. The aim of this study was to investigate TAM-mediated regulation of Bmi1 expression in gastrointestinal cancer. The relationship between TAMs and Bmi1 expression was analyzed by immunohistochemistry and quantitative real-time PCR (qRT-PCR), and results showed a positive correlation with tumor-infiltrating macrophages (CD68 and CD163) and Bmi1 expression in cancer cells. Co-culture with TAMs triggered Bmi1 expression in cancer cell lines and enhanced sphere formation ability. miRNA microarray analysis of a gastric cancer cell line co-cultured with macrophages was conducted, and using in silico methods to analyze the results, we identified miR-30e* as a potential regulator of Bmi1 expression. Luciferase assays using miR-30e* mimic revealed that Bmi1 was a direct target for miR-30e* by interactions with the putative miR-30e* binding sites in the Bmi1 3′ untranslated region. qRT-PCR analysis of resected cancer specimens showed that miR-30e* expression was downregulated in tumor regions compared with non-tumor regions, and Bmi1 expression was inversely correlated with miR-30e* expression in gastric cancer tissues, but not in colon cancer tissues. Our findings suggest that TAMs may cause increased Bmi1 expression through miR-30e* suppression, leading to tumor progression. The suppression of Bmi1 expression mediated by TAMs may thus represent a possible strategy as the treatment of gastrointestinal cancer. 相似文献
74.
In social insect colonies, queen-produced pheromones have important functions in social regulation. These substances influence the behavior and physiology of colony members. A queen-produced volatile that inhibits differentiation of new neotenic reproductives was recently identified in the lower termite Reticulitermes speratus. However, there are no known queen-specific volatiles of this type in any other termite species. Here, we report volatile compounds emitted by live queens of the higher termite Nasutitermes takasagoensis. We used headspace gas chromatography mass spectroscopy (HS GC-MS) to analyze volatiles emitted by live primary queens, workers, soldiers, alates, and eggs collected in a Japanese subtropical forest. Among 14 detected compounds, 7 were soldier-specific, 1 was alate-specific, 1 was egg-specific, and 1 was queen-specific. The queen-specific volatile was phenylethanol, which is different than the compound identified in R. speratus. The identification of this queen-specific volatile is the first step in determining its functions in higher termite social regulation. Comparisons of queen pheromone substances regulating caste differentiation among various termite taxa will contribute to a better understanding of the evolution of social systems in termites. 相似文献
75.
Song T Sugimoto K Ihara H Mizutani A Hatano N Kume K Kambe T Yamaguchi F Tokuda M Watanabe Y 《The Biochemical journal》2007,401(2):391-398
Evidence is presented that RSK1 (ribosomal S6 kinase 1), a downstream target of MAPK (mitogen-activated protein kinase), directly phosphorylates nNOS (neuronal nitric oxide synthase) on Ser847 in response to mitogens. The phosphorylation thus increases greatly following EGF (epidermal growth factor) treatment of rat pituitary tumour GH3 cells and is reduced by exposure to the MEK (MAPK/extracellular-signal-regulated kinase kinase) inhibitor PD98059. Furthermore, it is significantly enhanced by expression of wild-type RSK1 and antagonized by kinase-inactive RSK1 or specific reduction of endogenous RSK1. EGF treatment of HEK-293 (human embryonic kidney) cells, expressing RSK1 and nNOS, led to inhibition of NOS enzyme activity, associated with an increase in phosphorylation of nNOS at Ser847, as is also the case in an in vitro assay. In addition, these phenomena were significantly blocked by treatment with the RSK inhibitor Ro31-8220. Cells expressing mutant nNOS (S847A) proved resistant to phosphorylation and decrease of NOS activity. Within minutes of adding EGF to transfected cells, RSK1 associated with nNOS and subsequently dissociated following more prolonged agonist stimulation. EGF-induced formation of the nNOS-RSK1 complex was significantly decreased by PD98059 treatment. Treatment with EGF further revealed phosphorylation of nNOS on Ser847 in rat hippocampal neurons and cerebellar granule cells. This EGF-induced phosphorylation was partially blocked by PD98059 and Ro31-8220. Together, these data provide substantial evidence that RSK1 associates with and phosphorylates nNOS on Ser847 following mitogen stimulation and suggest a novel role for RSK1 in the regulation of nitric oxide function in brain. 相似文献
76.
At the Nakabusa hot spring, Japan, dense olive-green microbial mats develop in regions where the slightly alkaline, sulfidic effluent has cooled to 65 °C. The microbial community of such mats was analyzed by focusing on the diversity, as well as the in situ distribution and function of bacteria involved in sulfur cycling. Analyses of 16S rRNA and functional genes (aprA, pufM) suggested the importance of three thermophilic bacterial groups: aerobic chemolithotrophic sulfide-oxidizing species of the genus Sulfurihydrogenibium (Aquificae), anaerobic sulfate-reducing species of the genera Thermodesulfobacterium/Thermodesulfatator, and filamentous anoxygenic photosynthetic species of the genus Chloroflexus. A new oligonucleotide probe specific for Sulfurihydrogenibium was designed and optimized for catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH). In situ hybridizations of thin mat sections showed a heterogeneous vertical distribution of Sulfurihydrogenibium and Chloroflexus. Sulfurihydrogenibium dominated near the mat surface (50% of the total mat biovolume), while Chloroflexus dominated in deeper layers (up to 64% of the total mat biovolume). Physiological experiments monitoring in vitro changes of sulfide concentration indicated slight sulfide production by sulfate-reducing bacteria under anoxic-dark conditions, sulfide consumption by photosynthetic bacteria under anoxic-light conditions and strong sulfide oxidation by chemolithotrophic members of Aquificae under oxic-dark condition. We therefore propose that Sulfurihydrogenibium spp. act as highly efficient scavengers of oxygen from the spring water, thus creating a favorable, anoxic environment for Chloroflexus and Thermodesulfobacterium/Thermodesulfatator in deeper layers. 相似文献
77.
Kang SH Kim GR Seong M Baek SH Seol JH Bang OS Ovaa H Tatsumi K Komatsu M Tanaka K Chung CH 《The Journal of biological chemistry》2007,282(8):5256-5262
Ubiquitin-fold modifier 1 (Ufm1) is a recently identified new ubiquitin-like protein, whose tertiary structure displays a striking resemblance to ubiquitin. Similar to ubiquitin, it has a Gly residue conserved across species at the C-terminal region with extensions of various amino acid sequences that need to be processed in vivo prior to conjugation to target proteins. Here we report the isolation, cloning, and characterization of two novel mouse Ufm1-specific proteases, named UfSP1 and UfSP2. UfSP1 and UfSP2 are composed of 217 and 461 amino acids, respectively, and they have no sequence homology with previously known proteases. UfSP2 is present in most, if not all, of multicellular organisms including plant, nematode, fly, and mammal, whereas UfSP1 could not be found in plant and nematode upon data base search. UfSP1 and UfSP2 cleaved the C-terminal extension of Ufm1 but not that of ubiquitin or other ubiquitin-like proteins, such as SUMO-1 and ISG15. Both were also capable of releasing Ufm1 from Ufm1-conjugated cellular proteins. They were sensitive to inhibition by sulfhydryl-blocking agents, such as N-ethylmaleimide, and their active site Cys could be labeled with Ufm1-vinylmethylester. Moreover, replacement of the conserved Cys residue by Ser resulted in a complete loss of the UfSP1 and UfSP2 activities. These results indicate that UfSP1 and UfSP2 are novel thiol proteases that specifically process the C terminus of Ufm1. 相似文献
78.
Design and synthesis of new potent dipeptidyl peptidase IV inhibitors with enhanced ex vivo duration
Kondo T Nekado T Sugimoto I Ochi K Takai S Kinoshita A Tajima Y Yamamoto S Kawabata K Nakai H Toda M 《Bioorganic & medicinal chemistry》2007,15(7):2631-2650
A series of 5beta-methylprolyl-2-cyanopyrrolidine analogs were synthesized and evaluated as DPP-IV inhibitors, and the duration of their ex vivo activity was assessed. Comparison of their potency and duration of action was done among three different species. The mode of binding was investigated, and the effect on the plasma glucose level was evaluated. Structure-activity relationships are also presented. 相似文献
79.
Himeno Y Toyoda F Satoh H Amano A Cha CY Matsuura H Noma A 《American journal of physiology. Heart and circulatory physiology》2011,300(1):H251-H261
The question of the extent to which cytosolic Ca(2+) affects sinoatrial node pacemaker activity has been discussed for decades. We examined this issue by analyzing two mathematical pacemaker models, based on the "Ca(2+) clock" (C) and "membrane clock" (M) hypotheses, together with patch-clamp experiments in isolated guinea pig sinoatrial node cells. By applying lead potential analysis to the models, the C mechanism, which is dependent on potentiation of Na(+)/Ca(2+) exchange current via spontaneous Ca(2+) release from the sarcoplasmic reticulum (SR) during diastole, was found to overlap M mechanisms in the C model. Rapid suppression of pacemaker rhythm was observed in the C model by chelating intracellular Ca(2+), whereas the M model was unaffected. Experimental rupturing of the perforated-patch membrane to allow rapid equilibration of the cytosol with 10 mM BAPTA pipette solution, however, failed to decrease the rate of spontaneous action potential within ~30 s, whereas contraction ceased within ~3 s. The spontaneous rhythm also remained intact within a few minutes when SR Ca(2+) dynamics were acutely disrupted using high doses of SR blockers. These experimental results suggested that rapid disruption of normal Ca(2+) dynamics would not markedly affect spontaneous activity. Experimental prolongation of the action potentials, as well as slowing of the Ca(2+)-mediated inactivation of the L-type Ca(2+) currents induced by BAPTA, were well explained by assuming Ca(2+) chelation, even in the proximity of the channel pore in addition to the bulk cytosol in the M model. Taken together, the experimental and model findings strongly suggest that the C mechanism explicitly described by the C model can hardly be applied to guinea pig sinoatrial node cells. The possible involvement of L-type Ca(2+) current rundown induced secondarily through inhibition of Ca(2+)/calmodulin kinase II and/or Ca(2+)-stimulated adenylyl cyclase was discussed as underlying the disruption of spontaneous activity after prolonged intracellular Ca(2+) concentration reduction for >5 min. 相似文献
80.
Probe electrospray ionization (PESI) is one of the most promising methods in biochemical analysis because it enables us to analyze biological samples very quickly without any special pretreatment. Moreover, due to the small size of the needle tip, this method has advantages such as low invasiveness to the samples, making it possible to analyze the biological profiles of organs or tissues in living animal in situ. In this study, we performed a real-time analysis of living mice that delineates the differences in lipid composition of hepatocytes between normal and steatotic mice. In steatotic mice, the number of peaks and the ion abundance for triacylglycerols were much higher compared with those of control mice. All mice used in this study tolerated the procedure well and survived for more than a month until sacrificed for further analysis. To test a potential for medical diagnosis, human tumor tissues were also measured and we obtained discriminative results judged as useful for diagnostics. These results pave the way into the application of PESI to the in vivo analysis of biological molecules. 相似文献