首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   314篇
  免费   17篇
  331篇
  2024年   3篇
  2023年   6篇
  2022年   18篇
  2021年   26篇
  2020年   18篇
  2019年   41篇
  2018年   20篇
  2017年   22篇
  2016年   18篇
  2015年   12篇
  2014年   20篇
  2013年   24篇
  2012年   23篇
  2011年   19篇
  2010年   10篇
  2009年   8篇
  2008年   7篇
  2007年   3篇
  2006年   6篇
  2005年   9篇
  2004年   2篇
  2003年   3篇
  2002年   2篇
  2001年   2篇
  1999年   1篇
  1998年   3篇
  1987年   1篇
  1984年   1篇
  1976年   1篇
  1970年   1篇
  1953年   1篇
排序方式: 共有331条查询结果,搜索用时 17 毫秒
311.
One of the challenges encountered in microRNA (miRNA) studies is to observe their dual role in different conditions and cells. This leads to a tougher prediction of their behavior as gene expression regulators. miR-203 has been identified to play a negative role in the progression of malignant melanoma; however, it has been reported, with dual effect, as both an oncomiR and tumor suppressor miRNA in some malignancies, such as breast cancer, meanwhile, the role of miR-203 in melanoma stem cells or even metastatic cells is unclear. In the present study, after observation of upregulation of miR-203 in melanoma patient's serum and also melanospheres as cancer stem cells model, we examined its overexpression on the stemness potential and migration ability of melanoma cells. Our data demonstrated that the increased miR-203 level was significantly associated with significant increase in the ability of proliferation, colony and spheres formation, migration, and tumorigenesis in A375 and NA8 cells. All of these changes were associated with enhancement of BRAF, several epithelial to mesenchymal transition factors, and stemness genes. In conclusion, our results clearly determined that miR-203 could be down-regulateddownregulated in melanoma tissues but be overexpressed in melanoma stem cells. It has an important role as oncomiR and promote repopulation, tumorigenicity, self-renewal, and migration. Therefore, we suggested overexpression of miR-203 as biomarker for early detection of metastasis. However, more studies are needed to validate our data.  相似文献   
312.
Tumor-derived exosomes (TEX) are known by their immune suppression effects as well as initiation mediators in cancer progression and metastasis. Meanwhile, they are appropriate sources to induce immunity against tumor cells, as consist of tumor specific and associated antigens. The aim of the current study is modifying TEX with microRNA miR-155, miR-142, and let-7i, to enhance their immune stimulation ability and induce potent dendritic cells (DC). For this, exosomes were isolated from mouse mammalian breast cancer cell line; 4T1, and subjected to miR-155, miR-142, and let-7i by electroporation. Immature DCs were generated from mouse bone marrow in the presence of interleukin-4 (IL-4) and granulocyte-macrophage colony-stimulating factor (GM-CSF). To mature DCs, lipopolysaccharide (LPS), TEX, and modified TEX were used. The expression level of miRNAs and their target genes (IL-6, IL-17, IL-1b, TGFβ, SOCS1, KLRK1, IFNγ, and TLR4) was determined. TEX were nanovesicles with spheroid morphology which expressed CD81, CD63, and TSG101, as exosome markers, at protein level. MHCII, CD80, and CD40 as maturation markers were assessed by flow cytometry. Overexpression of miRNAs were confirmed in exosomes and mDCs. Up and downregulation of target genes confirmed the gene network in DC maturation. We found that Let-7i could efficiently induce the DC maturation, as well as miR-142 and miR-155 have enhancing effects. These findings reveal that the modified TEX would be a hopeful cell-free vaccine for the cancer treatment.  相似文献   
313.
314.
315.
The mammalian target of rapamycin (mTOR) is a large Ser/Thr protein kinase that belongs to the phosphoinositide 3-kinase (PI3K) family and mediates various physiological and pathological processes, especially cell proliferation, protein synthesis, autophagy, and cancer development. The mTOR expression is transient and tightly regulated in normal cells, but it is overactivated in cancer cells. Recently, several studies have indicated that microRNAs (miRNAs) play a critical role in the regulation of mTOR and mTOR-associated processes, some acting as inhibitors and the others as activators. Although it is still in infancy, the strategy of combining both miRNAs and mTOR inhibitors might provide an approach to selectively sensitizing tumor cells to chemotherapy-induced DNA damage and subsequently attenuating the tumor cell growth and apoptosis.  相似文献   
316.
Cervical cancer (CC) is one of the most common cancers among females, and it is most notable in developing countries. The exact etiology of CC is poorly understood; but, smoking, oral contraceptives, immunosuppression, and infection with human papillomavirus (HPV) may increase the risk of CC. There is also an association between CC and oxidative stress. Oxidative stress is caused by a disturbed oxidant-antioxidant balance in favor of the former, leading to an excessive generation of free radicals, particularly reactive oxygen species (ROS), and subsequently to biological damages. Thus, redox enzymatic and nonenzymatic regulators are required to maintain the redox homeostasis. Dysregulated antioxidants system and the pathogenic role of oxidative stress in CC have been investigated in several clinical and preclinical studies. In this study, we reviewed studies that have addressed the cross-talk between oxidative stress and CC pathogenesis and resistance to therapy.  相似文献   
317.

The field of tissue engineering exploits living cells in a variety of ways to restore, maintain, or enhance tissues and organs. Between stem cells, human induced pluripotent stem cells (hiPSCs), are very important due to their wide abilities. Growth factors can support proliferation, differentiation, and migration of hiPSCs. Platelet-rich plasma (PRP) could be used as the source of growth factors for hiPSCs. In the present study, proliferation and neural differentiation of hiPSCs on surface-modified nanofibrous Poly-l-lactic acid (PLLA) coated with platelet-rich plasma was investigated. The results of in vitro analysis showed that on the surface, which was modified nanofibrous scaffolds coated with platelet-rich plasma, significantly enhanced hiPSCs proliferation and neural differentiation were observed. Whereas the MTT ([3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide]) results showed biocompatibility of surface-modified nanofibrous scaffolds coated with platelet-rich plasma and the usage of these modified nanoscaffolds in neural tissue engineering in vivo is promising for the future.

  相似文献   
318.
Adhesion of bacteria to clay minerals is of great importance in both natural soil environments and technological applications. In the present study, equilibrium experiments along with Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and energy-dispersive X-ray analysis (EDX) were used to investigate the adhesion of Pseudomonas putida to the palygorskite and sepiolite clay minerals. The results showed that bacterial adhesion was rapid and reached equilibrium within 30 min. Equilibrium data showed that sepiolite has higher capacity and affinity than palygorskite for P. putida retention. Mixed FT-IR peak features of the clay minerals and P. putida were observed in the clay–bacteria complex spectra, indicating significant adhesion of P. putida to the minerals. However, some differences in the position of the individual bands were observed between infrared spectra obtained for pure bacteria or clay minerals and their corresponding clay–bacteria complexes, which are believed to be related to clay–bacteria interactions via different mechanisms. SEM/EDX analysis demonstrated fine fibrous clay particles adhered to the surface of individual P. putida cells. The results revealed rapid and close interactions of palygorskite and sepiolite with P. putida cells, which is important for better understanding the fate of bacteria in soil systems dominated by fibrous clay minerals and their practical applications in bioengineering and biotechnology.  相似文献   
319.
To elucidate the effect of extracellular matrices (ECMs) and related and nonrelated-limbal feeder cells as substitutes for the in vivo niche on the phenotype and genotype of the limbal stem cell (SC) expansion in vitro, human limbal SCs were used. The limbus explants were expanded on human amniotic membrane (AM), commercial ECMs including matrigel (MAT), collagen (COL), and control (no ECM) in presence and absence of feeder cells including human limbal fibroblasts (LFs), a limbus-specific cell and mouse embryonic fibroblasts (MEFs). Proliferation, cell death, immunocytochemistry, expression of specific genes, ultrastructural characteristics, and size and granularity of expanded human limbal SCs in different groups were evaluated. The growth, cell proliferation, and survival of limbal SCs were enhanced by AM and MAT matrices. Ultrastructure and expression of stemness markers revealed that there was no significance difference between AM and MAT. However, flow cytometric analysis showed that the size and granularity of cultured cells increased in the presence of MAT and COL as well as in no ECM group. Moreover, co-culturing of limbal explants with LFs and MEFs on AM and MAT groups, enhanced the expansion and survival of cultured cells in comparison with others. In conclusion, the cultivation of human limbal explants on AM co-culturing with human LFs promises to be a good model for preparing undifferentiated epithelial sheets suitable for transplantation.  相似文献   
320.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号