首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   428篇
  免费   32篇
  国内免费   1篇
  2024年   2篇
  2023年   7篇
  2022年   17篇
  2021年   26篇
  2020年   21篇
  2019年   47篇
  2018年   36篇
  2017年   22篇
  2016年   27篇
  2015年   20篇
  2014年   33篇
  2013年   46篇
  2012年   39篇
  2011年   33篇
  2010年   18篇
  2009年   8篇
  2008年   13篇
  2007年   11篇
  2006年   10篇
  2005年   5篇
  2004年   6篇
  2003年   4篇
  2001年   3篇
  2000年   1篇
  1998年   3篇
  1997年   1篇
  1991年   1篇
  1953年   1篇
排序方式: 共有461条查询结果,搜索用时 93 毫秒
21.
Several evidences support the idea that a small population of tumour cells representing self‐renewal potential are involved in initiation, maintenance, metastasis, and outcomes of cancer therapy. Elucidation of microRNAs/genes regulatory networks activated in cancer stem cells (CSCs) is necessary for the identification of new targets for cancer therapy. The aim of the present study was to predict the miRNAs pattern, which can target both metastasis and self‐renewal pathways using integration of literature and data mining. For this purpose, mammospheres derived from MCF‐7, MDA‐MB231, and MDA‐MB468 were used as breast CSCs model. They had higher migration, invasion, and colony formation potential, with increasing in stemness‐ and EMT‐related genes expression. Our results determined that miR‐204, ‐200c, ‐34a, and ‐10b contemporarily could target both self‐renewal and EMT pathways. This core regulatory of miRNAs could increase the survival rate of breast invasive carcinoma via up‐regulation of OCT4, SOX2, KLF4, c‐MYC, NOTCH1, SNAI1, ZEB1, and CDH2 and down‐regulation of CDH1. The majority of those target genes were involved in the regulation of pluripotency, MAPK, WNT, Hedgehog, p53, and transforming growth factor β pathways. Hence, this study provides novel insights for targeting core regulatory of miRNAs in breast CSCs to target both self‐renewal and metastasis potential and eradication of breast cancer.  相似文献   
22.
23.
This study aimed to evaluate proposed molecular markers related to eye limbal stem cells (SC) and to identify novel associated genes. The expression of a set of genes potentially involved in stemness was assessed in freshly prepared limbal, corneal and conjunctival tissues. PAX6, AC133, K12 and OCT4 were detected in all the tissues and p63(+)/K3(-)/K12(+)/Nodal(+)/Cx43(+) were expressed in conjunctival, p63(-)/K3(+)/K12(+)/Nodal(-)/Cx43(+) in corneal, and p63(+)/K3(-)/K12(-)/Nodal(-)/Cx43(-) in limbal tissues. Limbal explants were cultured on human amniotic membrane for 21 days. The cells expressed p63 but not K3, K12, Nodal and Cx43, however, the expression of K3, K12 and Cx43 was detected, and p63 and the high BrdU-labeling index decreased with more culture. Ultrastructure analysis of the cultured cells showed typically immature organization of intracellular organelles and architecture. Our data suggest that limbal, corneal and conjunctival tissues are heterogeneous with some progenitors. Also, the expression of traditional SC markers may not be a reliable indicator of limbal SC and there is an increasing need to determine factor(s) involved in their stemness.  相似文献   
24.
25.
Prostate cancer (PCa) is considered the most prevalent malignancy and the second major cause of cancer-related death in males from Western countries. PCa exhibits variable clinical pictures, ranging from dormant to highly metastatic cancer. PCa suffers from poor prognosis and diagnosis markers, and novel biomarkers are required to define disease stages and to design appropriate therapeutic approach by considering the possible genomic and epigenomic differences. MicroRNAs (miRNAs) comprise a class of small noncoding RNAs, which have remarkable functions in cell formation, differentiation, and cancer development and contribute in these processes through controlling the expressions of protein-coding genes by repressing translation or breaking down the messenger RNA in a sequence-specific method. miRNAs in cancer are able to reflect informative data about the current status of disease and this might benefit PCa prognosis and diagnosis since that is concerned to PCa patients and we intend to highlight it in this paper.  相似文献   
26.
27.

Background  

Seroma formation is the most frequent postoperative complication after breast cancer surgery. We carried out a study to investigate the effect of various demographic, clinical and therapeutic variables on seroma formation.  相似文献   
28.
Angiotensin Converting Enzyme Inhibitors (ACEI) like captopril and enalapril, can induce persistant cough in man. Noscapine, an antitussive alkaloid, can be used to suppress ACEI-induced cough. Some workers have suggested a role for bradykinin in precipitation of ACE-induced cough. Work carried out in our laboratory has shown noscapine to be a non-competitive inhibitor of bradykinin in guinea pig ileum. It is therefore possible that noscapine suppresses cough by blocking the effect of bradykinin receptor activation in the airways. Guinea pigs were placed in a cough-chamber connected to an air pump and a pressure transducer. Capsaicin was sprayed into the chamber and cough was recorded as a distinctive change in air pressure inside the cough-chamber. Animals treated with 1 mg/kg captopril and enalapril for 7 days, showed increased cough response. Ten microgram/kg FR190997, a non-peptide agonist of the bradykinin B2 receptor, also increased the cough response. Noscapine at 0.5, 1 and 2 mg/kg was able to reverse the effects of ACEI and FR190997. Naloxone, a specific opioid receptor inhibitor, did not block the antitussive effects of noscapine in enalapril or FR190997 treated guinea pigs. This antitussive effect of noscapine is not mediated via the mu, kappa or delta opioid receptors. It is therefore possible that noscapine exerts its antitussive action by interfering with the bradykinin cough mediation.  相似文献   
29.
30.
The global pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which started in late 2019, has caused huge social and economic losses. A growing number of investigators are focusing on understanding the interaction of SARS-CoV-2 with host cellular processes to find therapeutic approaches. New data suggest that lipid metabolism may play a significant role in regulating the response of immune cells like macrophages to viral infection, thereby affecting the outcome of the disease. Therefore, understanding the role of lipid metabolism could help develop new therapeutic approaches to mitigate the social and economic cost of coronavirus disease 2019 (COVID-19).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号