首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4044篇
  免费   288篇
  国内免费   1篇
  2024年   3篇
  2023年   21篇
  2022年   67篇
  2021年   124篇
  2020年   69篇
  2019年   94篇
  2018年   98篇
  2017年   83篇
  2016年   163篇
  2015年   224篇
  2014年   233篇
  2013年   337篇
  2012年   356篇
  2011年   350篇
  2010年   215篇
  2009年   162篇
  2008年   275篇
  2007年   252篇
  2006年   261篇
  2005年   196篇
  2004年   189篇
  2003年   150篇
  2002年   118篇
  2001年   34篇
  2000年   28篇
  1999年   23篇
  1998年   29篇
  1997年   22篇
  1996年   15篇
  1995年   20篇
  1994年   19篇
  1993年   16篇
  1992年   11篇
  1991年   20篇
  1990年   11篇
  1989年   9篇
  1988年   10篇
  1987年   2篇
  1986年   2篇
  1985年   4篇
  1983年   2篇
  1981年   2篇
  1980年   2篇
  1978年   2篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1910年   2篇
排序方式: 共有4333条查询结果,搜索用时 125 毫秒
271.
An extracellular alpha-d-galactosidase from Talaromyces flavus CCF 2686 with extremely broad and unusual acceptor specificity is produced exclusively in the presence of the specific inducer--6-deoxy-D-glucose (quinovose). The procedure for the preparation of this very expensive substance has been modified and optimized. Surprisingly, any of other common alpha-D-galactosidase inducers or substrates, e.g., D-galactose, melibiose and raffinose, did not stimulate its production. The crude alpha-D-galactosidase preparation was purified by anion-exchange chromatography and three isoenzymes with different substrate specificities were identified. The main isoenzyme (alphaGal1) was further purified by cation-exchange chromatography and fully characterized. When compared with other alpha-galactosidases and also with other isoenzymes produced by T. flavus, it showed a markedly different regioselectivity and also negligible hydrolytic activity towards melibiose. Moreover, it was active on polymeric substrates (locust bean gum, guar gum) and significantly inhibited by alpha-D-galactopyranosyl azide, D-galactose, D-xylose, melibiose, methyl alpha- and beta-D-galactopyranoside and lactose.  相似文献   
272.
In the framework of rehabilitation efforts to enhance the ecological value of closed-off estuaries, we studied the effects of restoring a tidal movement and seawater incursion on soil nitrogen conversion rates and vegetation response of semi-natural and agricultural grasslands in an outdoor mesocosm experiment. Intact soil monoliths including vegetation were collected in June 2004 on two locations on the shores of the Haringvliet lagoon in the south-western part of the Netherlands, which used to be a well-developed estuary before closure in 1970. For more than 1 year, soil monoliths were continuously subjected to a full-factorial combination of tidal treatment [stagnant/tidal (0.20 m amplitude)] and water type [(freshwater, oligohaline (salinity = 3)]. Soil, soil moisture and water nitrogen concentrations were monitored for a year, as well as vegetation response and nitrogen conversion rates in the soil. As expected, nitrogen mineralization rates were enhanced by the tidal treatment in comparison with the stagnant treatment. Denitrification rates however, were much less affected by tide and were even lower in the tidal treatments after 3 months in the agricultural grassland soils, implying that in general, soils were more oxic in the tidal treatments. Oligohaline treatments had virtually no effect on soil nitrogen conversion rates compared to freshwater treatments. Vegetation performance, however, was lower under saline conditions, especially in the semi-natural grassland. No further significant differences in response to the tidal and oligohaline treatments were found between the two soils although they differed strongly in soil characteristics. We conclude that if the rehabilitation measures in the former Haringvliet estuary are carried out as planned, drastic changes in soil nitrogen processes and vegetation composition will not occur.  相似文献   
273.
Taxol is a valuable plant-derived drug showing activity against various cancer types. Worldwide efforts had been made to overcome the supply problem, because the supply by isolation from the bark of the slow-growing yew trees is limited. Plant cell cultures as well as chemical and biotechnological semisynthesis are processes, which are intensively investigated for the production of taxanes paclitaxel (Taxol) and docetaxel (Taxotere) in the last few years. This article provides a comparison of the current research on taxane biosynthesis and production in yew cell cultures.  相似文献   
274.
Increasing evidence suggests a critical role for oxidative and nitrosative stress in the pathogenesis of most important neurodegenerative disorders. Parkinson's disease (PD) is a neurodegenerative disease characterized by a severe depletion in number of dopaminergic cells of the substantia nigra (SN). Administration of L-DOPA (LD) is the more effective treatment for patients with PD. However, the vast majority of patients suffer LD-related complications, which represent the major problem in the clinical management of PD. In the present study, LD administration to rats resulted in a significant dose-dependent increase in Hsp70 synthesis which was specific for the SN. The amount of 70 kDa protein increased after 6 h treatment reaching the maximal induction after 24-48 h. Induction of Hsp70 in the SN was associated with a significant increase in constitutive Hsc70 and mitochondrial Hsp60 stress proteins, and with increased expression of mitochondrial complex I whereas no significant changes were found in the activity of complex IV. In the same experimental conditions, a significant decrease in reduced glutathione was observed, which was associated with an increased content of oxidized glutathione content as well as nitric oxide (NO) synthase activity, NO metabolites and nitrotyrosine immunoreactivity. Interestingly, Hsp70 induction, iNOS up-regulation and nitrotyrosine formation have been confirmed also in SN and striatum of rats treated with LD and carbidopa, this latter being an inhibitor of the peripheral DOPA decarboxylase. Our data are in favor of the importance of the heat shock signal pathway as a basic mechanism of defense against neurotoxicity elicited by free radical oxygen and nitrogen species produced in aging and neurodegenerative disorders.  相似文献   
275.
Different genetically engineered mutants of bovine viral diarrhea virus (BVDV) were analyzed for the ability to establish infection in the fetuses of pregnant heifers. The virus mutants exhibited either a deletion of the overwhelming part of the genomic region coding for the N-terminal protease N(pro), a deletion of codon 349, which abrogates the RNase activity of the structural glycoprotein E(rns), or a combination of both mutations. Two months after infection of pregnant cattle with wild-type virus or either of the single mutants, the majority of the fetuses contained virus or were aborted or found dead in the uterus. In contrast, the double mutant was not recovered from fetal tissues after a similar challenge, and no dead fetuses were found. This result was verified with a nonrelated BVDV containing similar mutations. After intrauterine challenge with wild-type virus, mutated viruses, and cytopathogenic BVDV, all viruses could be detected in fetal tissue after 5, 7, and 14 days. Type 1 interferon (IFN) could be detected in fetal serum after challenge, except with wild-type noncytopathogenic BVDV. On days 7 and 14 after challenge, the largest quantities of IFN in fetal serum were induced by the N(pro) and RNase-negative double mutant virus. The longer duration of fetal infection with the double mutant resulted in abortion. Therefore, for the first time, we have demonstrated the essential role of both N(pro) and E(rns) RNase in blocking interferon induction and establishing persistent infection by a pestivirus in the natural host.  相似文献   
276.
Cytokinins are a class of plant hormones that regulate the cell cycle and diverse developmental and physiological processes. Several compounds have been identified that antagonize the effects of cytokinins. Based on structural similarities and competitive inhibition, it has been assumed that these anticytokinins act through a common cellular target, namely the cytokinin receptor. Here, we examined directly the possibility that various representative classical anticytokinins inhibit the Arabidopsis cytokinin receptors CRE1/AHK4 (cytokinin response 1/Arabidopsis histidine kinase 4) and AHK3 (Arabidopsis histidine kinase 3). We show that pyrrolo[2,3-d]pyrimidine and pyrazolo[4,3-d]pyrimidine anticytokinins do not act as competitors of cytokinins at the receptor level. Flow cytometry and microscopic analyses revealed that anticytokinins inhibit the cell cycle and cause disorganization of the microtubular cytoskeleton and apoptosis. This is consistent with the hypothesis that they inhibit regulatory cyclin-dependent kinase (CDK) enzymes. Biochemical studies demonstrated inhibition by selected anti-cytokinins of both Arabidopsis and human CDKs. X-ray determination of the crystal structure of a human CDK2-anticytokinin complex demonstrated that the antagonist occupies the ATP-binding site of CDK2. Finally, treatment of human cancer cell lines with anticytokinins demonstrated their ability to kill human cells with similar effectiveness as known CDK inhibitors.  相似文献   
277.
Escherichia coli serogroup O26 consists of enterohemorrhagic E. coli (EHEC) and atypical enteropathogenic E. coli (aEPEC). The former produces Shiga toxins (Stx), major determinants of EHEC pathogenicity, encoded by bacteriophages; the latter is Stx negative. We have isolated EHEC O26 from patient stools early in illness and aEPEC O26 from stools later in illness, and vice versa. Intrapatient EHEC and aEPEC isolates had quite similar pulsed-field gel electrophoresis (PFGE) patterns, suggesting that they might have arisen by conversion between the EHEC and aEPEC pathotypes during infection. To test this hypothesis, we asked whether EHEC O26 can lose stx genes and whether aEPEC O26 can be lysogenized with Stx-encoding phages from EHEC O26 in vitro. The stx2 loss associated with the loss of Stx2-encoding phages occurred in 10% to 14% of colonies tested. Conversely, Stx2- and, to a lesser extent, Stx1-encoding bacteriophages from EHEC O26 lysogenized aEPEC O26 isolates, converting them to EHEC strains. In the lysogens and EHEC O26 donors, Stx2-converting bacteriophages integrated in yecE or wrbA. The loss and gain of Stx-converting bacteriophages diversifies PFGE patterns; this parallels findings of similar but not identical PFGE patterns in the intrapatient EHEC and aEPEC O26 isolates. EHEC O26 and aEPEC O26 thus exist as a dynamic system whose members undergo ephemeral interconversions via loss and gain of Stx-encoding phages to yield different pathotypes. The suggested occurrence of this process in the human intestine has diagnostic, clinical, epidemiological, and evolutionary implications.  相似文献   
278.
By alternative use of four RSL (reactive site loop) coding exon cassettes, the serpin (serine protease inhibitor) gene Spn4 from Drosophila melanogaster was proposed to enable the synthesis of multiple protease inhibitor isoforms, one of which has been shown to be a potent inhibitor of human furin. Here, we have investigated the inhibitory spectrum of all Spn4 RSL variants. The analyses indicate that the Spn4 gene encodes inhibitors that may inhibit serine proteases of the subtilase family (S8), the chymotrypsin family (S1), and the papain-like cysteine protease family (C1), most of them at high rates. Thus a cohort of different protease inhibitors is generated simply by grafting enzyme-adapted RSL sequences on to a single serpin scaffold, even though the target proteases contain different types and/or a varying order of catalytic residues and are descendents of different phylogenetic lineages. Since all of the Spn4 RSL isoforms are produced as intracellular residents and additionally as variants destined for export or associated with the secretory pathway, the Spn4 gene represents a versatile defence tool kit that may provide multiple antiproteolytic functions.  相似文献   
279.
PPO (protoporphyrinogen IX oxidase) catalyses the flavin-dependent six-electron oxidation of protogen (protoporphyrinogen IX) to form proto (protoporphyrin IX), a crucial step in haem and chlorophyll biosynthesis. The apparent K(m) value for wild-type tobacco PPO2 (mitochondrial PPO) was 1.17 muM, with a V(max) of 4.27 muM.min(-1).mg(-1) and a catalytic activity k(cat) of 6.0 s(-1). Amino acid residues that appear important for substrate binding in a crystal structure-based model of the substrate docked in the active site were interrogated by site-directed mutagenesis. PPO2 variant F392H did not reveal detectable enzyme activity indicating an important role of Phe(392) in substrate ring A stacking. Mutations of Leu(356), Leu(372) and Arg(98) increased k(cat) values up to 100-fold, indicating that the native residues are not essential for establishing an orientation of the substrate conductive to catalysis. Increased K(m) values of these PPO2 variants from 2- to 100-fold suggest that these residues are involved in, but not essential to, substrate binding via rings B and C. Moreover, one prominent structural constellation of human PPO causing the disease variegate porphyria (N67W/S374D) was successfully transferred into the tobacco PPO2 background. Therefore tobacco PPO2 represents a useful model system for the understanding of the structure-function relationship underlying detrimental human enzyme defects.  相似文献   
280.
A number of studies have identified cytosolic prostaglandin E(2) synthase (cPGES)/p23 as a cytoplasmic protein capable of metabolism of prostaglandin E(2) (PGE(2)) from the cyclooxygenase metabolite prostaglandin endoperoxide (PGH(2)). However, this protein has also been implicated in a number of other pathways, including stabilization of the glucocorticoid receptor (GR) complex. To define the importance of the functions assigned to this protein, mice lacking detectible cPGES/p23 expression were generated. cPGES/p23(-/-) pups die during the perinatal period and display retarded lung development reminiscent of the phenotype of GR-deficient neonates. Furthermore, GR-sensitive gluconeogenic enzymes are not induced in the prenatal period. However, unlike GR-deficient embryos, cPGES/p23(-/-) embryos are small and a proliferation defect is observed in cPGES/p23(-/-) fibroblasts. Analysis of arachidonic acid metabolites in embryonic tissues and primary fibroblasts failed to support a function for this protein in PGE(2) biosynthesis. Thus, while the growth retardation of the cPGES/p23(-/-) pups and decreased proliferation of primary fibroblasts identify functions for this protein in addition to GR stabilization, it is unlikely that these functions include metabolism of PGH(2) to PGE(2).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号