首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   358篇
  免费   28篇
  2022年   2篇
  2021年   2篇
  2020年   4篇
  2019年   6篇
  2018年   10篇
  2017年   3篇
  2016年   11篇
  2015年   14篇
  2014年   16篇
  2013年   18篇
  2012年   24篇
  2011年   20篇
  2010年   11篇
  2009年   15篇
  2008年   22篇
  2007年   29篇
  2006年   20篇
  2005年   23篇
  2004年   25篇
  2003年   28篇
  2002年   18篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1997年   3篇
  1996年   5篇
  1995年   4篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1990年   1篇
  1989年   5篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   3篇
  1977年   1篇
  1976年   5篇
  1974年   1篇
  1973年   1篇
  1968年   1篇
  1965年   1篇
  1963年   1篇
排序方式: 共有386条查询结果,搜索用时 171 毫秒
21.
22.
Chloroplasts are bounded by a pair of outer membranes, the envelope, that is the only permanent membrane structure of the different types of plastids. Chloroplasts have had a long and complex evolutionary past and integration of the envelope membranes in cellular functions is the result of this evolution. Plastid envelope membranes contain a wide diversity of lipids and terpenoid compounds serving numerous biochemical functions and the flexibility of their biosynthetic pathways allow plants to adapt to fluctuating environmental conditions (for instance phosphate deprivation). A large body of knowledge has been generated by proteomic studies targeted to envelope membranes, thus revealing an unexpected complexity of this membrane system. For instance, new transport systems for metabolites and ions have been identified in envelope membranes and new routes for the import of chloroplast-specific proteins have been identified. The picture emerging from our present understanding of plastid envelope membranes is that of a key player in plastid biogenesis and the co-ordinated gene expression of plastid-specific protein (owing to chlorophyll precursors), of a major hub for integration of metabolic and ionic networks in cell metabolism, of a flexible system that can divide, produce dynamic extensions and interact with other cell constituents. Envelope membranes are indeed one of the most complex and dynamic system within a plant cell. In this review, we present an overview of envelope constituents together with recent insights into the major functions fulfilled by envelope membranes and their dynamics within plant cells. Special Issue of Photosynthesis Research in honor of Andrew A. Benson.  相似文献   
23.
24.
25.
The Rab GTPase family regulates membrane domain organization and vesicular transport pathways. Recent studies indicate that one member of the family, Rab27a, regulates transport of lysosome-related organelles in specialized cells, such as melanosomes and lytic granules. Very little is known about the related isoform, Rab27b. Here we used genetically modified mice to study the involvement of the Rab27 proteins in mast cells, which play key roles in allergic responses. Both Rab27a and Rab27b isoforms are expressed in bone marrow-derived mast cells (BMMC) and localize to secretory granules. Nevertheless, secretory defects as measured by beta-hexosaminidase release in vitro and passive cutaneous anaphylaxis in vivo were found only in Rab27b and double Rab27 knockout (KO) mice. Immunofluorescence studies suggest that a subset of Rab27b and double Rab27-deficient BMMCs exhibit mild clustering of granules. Quantitative analysis of live-cell time-lapse imaging revealed that BMMCs derived from double Rab27 KO mice showed almost 10-fold increase in granules exhibiting fast movement (>1.5 microm/s), which could be disrupted by nocodazole. These results suggest that Rab27 proteins, particularly Rab27b, play a crucial role in mast cell degranulation and that their action regulates the transition from microtubule to actin-based motility.  相似文献   
26.

Background

Spontaneous reporting of adverse drug reactions (ADRs) is an important method for pharmacovigilance, but under-reporting and poor quality of reports are major limitations. The aim of this study was to evaluate if repeated one-page ADR information letters affect (i) the reporting rate of ADRs and (ii) the quality of the ADR reports.

Methods

All 151 primary healthcare units in the Region Västra Götaland, Sweden, were randomly allocated (1:1) to an intervention (n = 77) or a control group (n = 74). The intervention consisted of one-page ADR information letters administered at three occasions during 2008 to all physicians and nurses in the intervention units. The number of ADR reports received from the 151 units was registered, as was the quality of the reports, which was defined as high if the ADR was to be reported according to Swedish regulations, that is, if the ADR was (i) serious, (ii) unexpected, and/or (iii) related to the use of new drugs and not labelled as common in the Summary of Product Characteristics. A questionnaire was administered to evaluate if the ADR information letter had reached the intended recipient.

Results

Before the intervention, no significant differences in reporting rate or number of high quality reports could be detected between the randomization groups. In 2008, 79 reports were sent from 37 intervention units and 52 reports from 30 control units (mean number of reports per unit ± standard deviation: 1.0 ± 2.5 vs. 0.7 ± 1.2, P = 0.34). The number of high quality reports was higher in intervention units than in control units (37 vs. 15 reports, 0.5 ± 0.9 vs. 0.2 ± 0.6, P = 0.048). According to the returned questionnaires (n = 1,292, response rate 57%), more persons in the intervention than in the control group had received (29% vs. 19%, P < 0.0001) and read (31% vs. 26%, P < 0.0001) an ADR information letter.

Conclusions

This study suggests that repeated ADR information letters to physicians and nurses do not increase the ADR reporting rate, but may increase the number of high quality reports.  相似文献   
27.
Obligate intracellular Apicomplexa parasites share a unique invasion mechanism involving a tight interaction between the host cell and the parasite surfaces called the moving junction (MJ). The MJ, which is the anchoring structure for the invasion process, is formed by secretion of a macromolecular complex (RON2/4/5/8), derived from secretory organelles called rhoptries, into the host cell membrane. AMA1, a protein secreted from micronemes and associated with the parasite surface during invasion, has been shown in vitro to bind the MJ complex through a direct association with RON2. Here we show that RON2 is inserted as an integral membrane protein in the host cell and, using several interaction assays with native or recombinant proteins, we define the region that binds AMA1. Our studies were performed both in Toxoplasma gondii and Plasmodium falciparum and although AMA1 and RON2 proteins have diverged between Apicomplexa species, we show an intra-species conservation of their interaction. More importantly, invasion inhibition assays using recombinant proteins demonstrate that the RON2-AMA1 interaction is crucial for both T. gondii and P. falciparum entry into their host cells. This work provides the first evidence that AMA1 uses the rhoptry neck protein RON2 as a receptor to promote invasion by Apicomplexa parasites.  相似文献   
28.
29.
In order to investigate the role of the unique seventh N23-glycosylation site of the equine LH/CG receptor (eLHCGR) in the cAMP pathway activation, COS-7 cells were transiently transfected with either the wild-type or the mutant eLHCGR(N23Q) cDNA and challenged with porcine LH and eCG for cAMP production. We showed that the N23-glycosylation site of the eLHCGR is not required for the functional coupling of the receptor with the cAMP pathway and is not responsible for the limited potency of eCG relative to pLH to activate this receptor.  相似文献   
30.

Background

The eukaryotic translation initiation factor eIF4E plays a key role in plant-potyvirus interactions. eIF4E belongs to a small multigenic family and three genes, eIF4E1, eIF4E2 and eIF(iso)4E, have been identified in tomato. It has been demonstrated that eIF4E-mediated natural recessive resistances against potyviruses result from non-synonymous mutations in an eIF4E protein, which impair its direct interaction with the potyviral protein VPg. In tomato, the role of eIF4E proteins in potyvirus resistance is still unclear because natural or induced mutations in eIF4E1 confer only a narrow resistance spectrum against potyviruses. This contrasts with the broad spectrum resistance identified in the natural diversity of tomato. These results suggest that more than one eIF4E protein form is involved in the observed broad spectrum resistance.

Methodology/Principal Findings

To gain insight into the respective contribution of each eIF4E protein in tomato-potyvirus interactions, two tomato lines silenced for both eIF4E1 and eIF4E2 (RNAi-4E) and two lines silenced for eIF(iso)4E (RNAi-iso4E) were obtained and characterized. RNAi-4E lines are slightly impaired in their growth and fertility, whereas no obvious growth defects were observed in RNAi-iso4E lines. The F1 hybrid between RNAi-4E and RNAi-iso4E lines presented a pronounced semi-dwarf phenotype. Interestingly, the RNAi-4E lines silenced for both eIF4E1 and eIF4E2 showed broad spectrum resistance to potyviruses while the RNAi-iso4E lines were fully susceptible to potyviruses. Yeast two-hybrid interaction assays between the three eIF4E proteins and a set of viral VPgs identified two types of VPgs: those that interacted only with eIF4E1 and those that interacted with either eIF4E1 or with eIF4E2.

Conclusion/Significance

These experiments provide evidence for the involvement of both eIF4E1 and eIF4E2 in broad spectrum resistance of tomato against potyviruses and suggest a role for eIF4E2 in tomato-potyvirus interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号