首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1364篇
  免费   91篇
  国内免费   4篇
  2024年   4篇
  2023年   25篇
  2022年   55篇
  2021年   97篇
  2020年   91篇
  2019年   166篇
  2018年   98篇
  2017年   78篇
  2016年   82篇
  2015年   72篇
  2014年   87篇
  2013年   123篇
  2012年   108篇
  2011年   88篇
  2010年   57篇
  2009年   50篇
  2008年   45篇
  2007年   18篇
  2006年   26篇
  2005年   20篇
  2004年   20篇
  2003年   19篇
  2002年   16篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
  1988年   2篇
  1985年   1篇
排序方式: 共有1459条查询结果,搜索用时 31 毫秒
151.
Mesophilic glucuronidases are the most widely used reporters of gene expression in plants, but unsuitable as reporters in (hyper-)thermophiles due their insufficient thermal stability. Here we present the native 66.8 kDa thermostable β-glucuronidase of Sulfolobus solfataricus. The enzyme activity is characterized in a wide temperature range ideal for, but not limited to, in vivo genetic study of hyperthermophiles. As a proof of concept, we demonstrate its use as a reporter of gene expression in Sulfolobus, by monitoring a promoter fusion created with the β-glucuronidase coding gene gusB and a copper-responsive promoter.  相似文献   
152.
Adult mesenchymal stem cells have self-renewal and multiple differentiation potentials, and play important roles in regenerative medicine. However, their use may be limited by senescence or age of the donor, leading to changes in stem cell functionality. We investigated morphological, molecular and functional differences between bone marrow-derived (MSC) and adipose-derived (ASC) stem cells isolated from neonatal, young and old rats compared to Schwann cells from the same animals. Immunocytochemistry, RT-PCR, proliferation assays, western blotting and transmission electron microscopy were used to investigate expression of senescence markers. Undifferentiated and differentiated ASC and MSC from animals of different ages expressed Notch-2 at similar levels; protein-38 and protein-53 were present in all groups of cells with a trend towards increased levels in cells from older animals compared to those from neonatal and young rats. Following co-culture with adult neuronal cells, dMSC and dASC from animals of all ages elicited robust neurite outgrowth. Mitotracker® staining was consistent with ultrastructural changes seen in the mitochondria of cells from old rats, indicative of senescence. In conclusion, this study showed that although the cells from aged animals expressed markers of senescence, aged MSC and ASC differentiated into SC-like cells still retain potential to support axon regeneration.  相似文献   
153.
Peroxisome proliferator activated receptor γ, belongs to PPARs, which exerts various metabolic functions including differentiation process. To testify the importance of PPARγ in neural differentiation of mouse embryonic stem cells (mESCs), its expression level was assessed. Data revealed an elevation in expression level of PPARγ when neural precursors (NPs) are formed upon retinoic acid treatment. Thus, involvement of PPARγ in two stages of neural differentiation of mESCs, during and post-NPs formation was examined by application of its agonist and antagonist. Our results indicated that PPARγ inactivation via treatment with GW9662 during NPs formation, reduced expression of neural precursor and neural (neuronal and astrocytes) markers. However, PPARγ inactivation by antagonist treatment post-NPs formation stage only decreased the expression of mature astrocyte marker (Gfap) suggesting that inactivation of PPARγ by antagonist decreased astrocyte differentiation. Here, we have demonstrated the stage dependent role of PPARγ modulation on neural differentiation of mESCs by retinoic acid treatment for the first time.  相似文献   
154.
Cell-based approaches offer a potential therapeutic strategy for appropriate bone manufacturing. Capable of differentiating into multiple cell types especially osteoblasts spontaneously, unrestricted somatic stem cell (USSC) seems to be a suitable candidate. Recent studies have shown the involvement of microRNAs in several biological processes. miRNA microarray profiling was applied in order to identify the osteo-specific miRNA signature. Prior to this analysis, osteogenic commitment of osteoblasts was evaluated by measuring ALPase activity, biomineralization, specific staining and evaluation of some main osteogenic marker genes. To support our findings, various in silico explorations (for both putative targets and signaling pathways) and empirical analyses (miRNA transfections followed by qPCR of osteogenic indicators and ALPase activity measurement) were carried out. The function of GSK-3b inhibitor was also studied to investigate the role of WNT in osteogenesis. Transient modulation of multiple osteo-miRs (such as mir-199b, 1274a, 30b) with common targets (such as BMPR, TCFs, SMADs) as mediators of osteogenic pathways including cell-cell interactions, WNT and TGF-beta pathways, suggests a mechanism for rapid induction of the osteogenesis as an anti-miRNA therapy. The results of this research have identified the miRNA signature which regulates the osteogenesis mechanism in USSC. To conclude, our study reveals more details about the allocation of USSCs into osteogenic lineage through modulatory effect of miRNAs on targets and pathways required for creating a tissue-specific phenotype and may aid in future clinical interventions.  相似文献   
155.
In tropical and subtropical regions of the world, parasitic diseases are major obstacle in the health and ultimately overall performance of animals. Cattle express heritable, contrasting phenotypes when exposed to ticks depicting genetic nature of trait. IFN-γ is one of the most reported genes critical for innate and adaptive immunity against viral and intracellular infections. To identify its role in resistance for ectoparasite especially tick, genetic characterization of this gene was done in resistant and susceptible animals of Sahiwal cattle (n = 95) and Friesian (n = 92). Nine Polymorphisms were identified, three of them were found in exonic region. One out of nine variants was being reported previously (ss82716193) and was confirmed in Pakistani Sahiwal cattle population as well. Single site analysis of each variant depicted their significance in tick resistant and tick susceptible groups (P < 0.05). The associations using haplotypes were more informative than for single markers. Eighteen different haplotypes resulting from nine polymorphic sites were used in construction of maximum parsimony tree which categorized resistant and susceptible animals in two clades. Genetic markers identified in this study can be useful in future breeding selection programs against tick resistance.  相似文献   
156.
Salmonella enterica serovar Typhimurium is a clinically important gram-negative, enteric bacterial pathogen that activates several Toll-like receptors (TLRs). While TLR signaling through the adaptor protein MyD88 has been shown to promote inflammation and host defense against the systemic spread of S. Typhimurium, curiously, its role in the host response against S. Typhimurium within the mammalian gastrointestinal (GI) tract is less clear. We therefore used the recently described Salmonella-induced enterocolitis and fibrosis model: wild-type (WT) and MyD88-deficient (MyD88(-/-)) mice pretreated with streptomycin and then orally infected with the ΔaroA vaccine strain of S. Typhimurium. Tissues were analyzed for bacterial colonization, inflammation, and epithelial damage, while fibrosis was assessed by collagen quantification and Masson's trichrome staining. WT and MyD88(-/-) mice carried similar intestinal pathogen burdens to postinfection day 21. Infection of WT mice led to acute mucosal and submucosal inflammation and edema, as well as significant intestinal epithelial damage and proliferation, leading to widespread goblet cell depletion. Impressive collagen deposition in the WT intestine was also evident in the submucosa at postinfection days 7 and 21, with fibrotic regions rich in fibroblasts and collagen. While infected MyD88(-/-) mice showed levels of submucosal inflammation and edema similar to WT mice, they were impaired in the development of mucosal inflammation, along with infection-induced epithelial damage, proliferation, and goblet cell depletion. MyD88(-/-) mouse tissues also had fewer submucosal fibroblasts and 60% less collagen. We noted that cyclooxygenase (Cox)-2 expression was MyD88-dependent, with numerous Cox-2-positive cells identified in fibrotic regions of WT mice at postinfection day 7, but not in MyD88(-/-) mice. Treatment of WT mice with the Cox-2 inhibitor rofecoxib (20 mg/kg) significantly reduced fibroblast numbers and collagen levels without altering colitis severity. In conclusion, MyD88 and Cox-2 signaling play roles in intestinal fibrosis during Salmonella-induced enterocolitis.  相似文献   
157.
Although it is well-known that AMPA receptors are involved in spatial learning and memory, published data on GluR3 and GluR4 are limited. Moreover, there is no information about GluR3 and GluR4 receptor complex levels in spatial memory training. It was therefore the aim of the study to determine the above-mentioned receptor levels following training in the Multiple T-Maze (MTM). Results from the MTM and hippocampal membrane proteins from C57BL/6J mice were taken from an own previous study and GluR3 and GluR4 receptor complexes were run on blue native gel electrophoresis followed by immunoblotting and quantification of bands. Subsequently, GluR3 and GluR4 were identified under denaturing conditions from two-dimensional gels by mass spectrometry (nano-LC-ESI-MS/MS). Hippocampal levels of GluR3 containing complexes (apparent molecular weight between 480 and 720) were decreased while GluR4 containing complexes (apparent molecular weight between 480 and 720) were increased. GluR4 complex levels in trained mice were correlating with latency and speed. Mass spectrometry unambiguously identified the two receptor subunits. The findings show that GluR3 and GluR4 may have different functions in the processes of spatial memory training in the MTM and indeed, different neurobiological functions of the two receptor subunits have been already reported. GluR3 and GluR4 receptor complex rather than subunit levels are paralleling training in the MTM and GluR4 complex levels were even linked to memory training, which may be of relevance for understanding molecular memory processes, interpretation of previous work or for design of future AMPA receptor studies.  相似文献   
158.
Liver ischemia/reperfusion (IR) injury is a complex phenomenon that may cause local as well as remote organ injuries. Reactive oxygen species (ROS) along with many pro- and anti- inflammatory cytokines are implicated in the development of organ injury. The renal functional, histological, oxidative stress and inflammatory indices were studied during a short and a longer period of liver IR. Rats were subjected to either sham operation or 90 min partial liver ischemia followed by 4 or 24 h of reperfusion. Serum ALT, AST, ALK and LDH levels, BUN and creatinine, renal MDA level, SOD and catalase activities were evaluated as well as serum IL-6 and IL-10 concentrations along with renal histological evaluation. Ninety minutes liver ischemia /4 h reperfusion caused an increase in BUN and renal MDA levels and a decrease in SOD and catalase activities. It also caused an increase in serum IL-6 and IL-10 levels. 24 h liver reperfusion resulted in a reduction in BUN levels and lower oxidative damages demonstrated by a decrease in renal MDA levels and an increase in renal SOD and catalase activities comparing to 4 h reperfusion group. Evaluations indicated improvement in histology such as less cytoplasmic vacuolation and lower tubular debris. Serum inflammatory indices (IL-6 and IL-10 levels) were also reduced. This study showed that liver IR damage causes renal injury including functional, inflammatory and oxidative status changes. The remote kidney damage was then improved by continuing reperfusion from 4 to 24 h.  相似文献   
159.
It is believed that ROS-induced oxidative stress triggers numerous signaling pathways which are involved in neurodegenerative diseases, including Alzheimer’s disease. To find the effective drugs for neurodegenerative diseases, the deep delve into molecular mechanisms underlie these diseases is necessary. In the current study, we investigated the effects of flavonoid baicalein on H2O2-induced oxidative stress and cell death in SK-N-MC cells. Our results revealed that the treatment of SK-N-MC cells with H2O2 led to a decrease in cell viability through phosphorylation and activation of extracellular signal-regulated kinases (ERKs) and c-Jun N-terminal kinases (JNKs) pathways followed by increase in Bax/Bcl2 ratio and initiation of caspase-dependent apoptotic pathways. In addition, our results showed that the exposure of SK-N-MC cells to H2O2 ended up in reduction of glutathione (GSH) levels of SK-N-MC cells via JNK/ERK-mediated down-regulation of γ-glutamyl-cysteine synthetase (γ-GCS) expression. Our results demonstrated that flavonoid baicalein protected against H2O2-induced cell death by inhibition of JNK/ERK pathways activation and other key molecules in apoptotic pathways, including blockage of Bax and caspase-9 activation, induction of Bcl-2 expression and prevention of cell death. Baicalein supported intracellular defense mechanisms through maintaining GSH levels in SK-N-MC cells by the removal of inhibition effects of JNK/ERK pathways from γ-GCS expression. In addition, baicalein attenuated lipid and protein peroxidation and intracellular reactive oxygen species in SK-N-MC cells. In accordance with these observations, baicalein can be a promising candidate in antioxidant therapy and designing of natural-based drug for ROS-induced neurodegenerative disorders.  相似文献   
160.
Faam B  Daneshpour MS  Azizi F  Salehi M  Hedayati M 《Gene》2012,498(1):116-119

Introduction

Thyroid peroxidase (TPO) gene variations are one cause of thyroid autoimmune diseases. The aim of this study was to examine the association between the T1936C, T2229C and A2257C polymorphisms of the TPO gene and Anti-TPO level.

Materials and methods

In this case–control study, 188 individuals (86 males and 102 females), aged 20–80 years, were randomly selected from among the Tehran Lipid and Glucose Study (TLGS) population. A2257C and T2229C SNPs were detected with RFLP by use of BsrI and Eco57I as the restriction enzymes respectively, while the T1936C SNP was determined with ARMS-PCR.

Results

In the presence of the C allele of T1936C, Anti-TPO level was significantly increased (CC: 238 ± 43.3, CT: 47.7 ± 15.9, TT: 74.1 ± 11.3 IU/L p = 0.002); however, this association was attenuated after adjustment for sex and age (p = 0.059). No significant difference, before and after adjustment, was found in Anti-TPO level in the presence of T2229C SNP (CC: 129.1 ± 24.5, CT: 43.5 ± 12.6, TT: 126.5 ± 13.8 IU/L p = 0.196). The association between A2257C and Anti-TPO level was only significant after adjustment for potential confounders (p = 0.007). The association between ATC and CTT haplotypes and Anti-TPO level was significant (p = 0.023, 0.021 respectively), the association between CTT and Anti-TPO concentration was also significant after adjustment for sex (p = 0.014).

Conclusion

The results of the present study confirmed the association between TPO gene polymorphisms and Anti-TPO level in the Tehranian population.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号