首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1385篇
  免费   93篇
  国内免费   4篇
  1482篇
  2024年   4篇
  2023年   27篇
  2022年   60篇
  2021年   98篇
  2020年   91篇
  2019年   166篇
  2018年   98篇
  2017年   78篇
  2016年   85篇
  2015年   73篇
  2014年   89篇
  2013年   123篇
  2012年   109篇
  2011年   88篇
  2010年   57篇
  2009年   50篇
  2008年   48篇
  2007年   19篇
  2006年   28篇
  2005年   20篇
  2004年   22篇
  2003年   19篇
  2002年   16篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
  1988年   2篇
  1985年   1篇
  1971年   1篇
排序方式: 共有1482条查询结果,搜索用时 15 毫秒
71.
Response surface methodology (RSM) was used to evaluate the effects of fermentation parameters for cellulase production by Trichoderma reesei QM9414 and T. reesei MCG77 in solid-state fermentation using rice bran as substrate. Initial pH, moisture content and temperature were optimized using filter paper activity (FPA) as response. Statistical analysis of the results for T. reesei QM9414 showed that only moisture content had significant effect on cellulase activity and had a linear effect on enzyme activity (maximum enzyme activities were obtained at 70% moisture content). The results for T. reesei MCG77 showed that temperature and moisture content were the most significant parameters for cellulase activity. The optimum cellulase production was in the temperature range of 25-30 degrees C and moisture content between 55% and 70%. After the optimization, the FPA in T. reesei MCG77 was increased by 2.5 folds compared to that of T. reesei QM9414.  相似文献   
72.
Human glutathione transferase A1-1 (GST A1-1) has a flexible C-terminal segment that forms a helix (alpha9) closing the active site upon binding of glutathione and a small electrophilic substrate such as 1-chloro-2,4-dinitrobenzene (CDNB). In the absence of active-site ligands, the C-terminal segment is not fixed in one position and is not detectable in the crystal structure. A key residue in the alpha9-helix is Phe 220, which can interact with both the enzyme-bound glutathione and the second substrate, and possibly guide the reactants into the transition state. Mutation of Phe 220 into Ala and Thr was shown to reduce the catalytic efficiency of GST A1-1. The mutation of an additional residue, Phe 222, caused further decrease in activity. The presence of a viscosogen in the reaction medium decreased the kinetic parameters k(cat) and k(cat)/K(m) for the conjugation of CDNB catalyzed by wild-type GST A1-1, in agreement with the view that product release is rate limiting for the substrate-saturated enzyme. The mutations cause a decrease of the viscosity dependence of both kinetic parameters, indicating that the motion of the alpha9-helix is linked to catalysis in wild-type GST A1-1. The isomerization reaction with the alternative substrate Delta(5)-androstene-3,17-dione (AD) is affected in a similar manner by the viscosogens. The transition state energy of the isomerization reaction, like that of the CDNB conjugation, is lowered by Phe 220 as indicated by the effects of the mutations on k(cat)/K(m). The results demonstrate that Phe 220 and Phe 222, in the dynamic C-terminal segment, influence rate-determining steps in the catalytic mechanism of both the substitution and the isomerization reactions.  相似文献   
73.
Unravelling the factors determining the allocation of carbon to various plant organs is one of the great challenges of modern plant biology. Studying allocation under close to natural conditions requires non-invasive methods, which are now becoming available for measuring plants on a par with those developed for humans. By combining magnetic resonance imaging (MRI) and positron emission tomography (PET), we investigated three contrasting root/shoot systems growing in sand or soil, with respect to their structures, transport routes and the translocation dynamics of recently fixed photoassimilates labelled with the short-lived radioactive carbon isotope 11C. Storage organs of sugar beet ( Beta vulgaris ) and radish plants ( Raphanus sativus ) were assessed using MRI, providing images of the internal structures of the organs with high spatial resolution, and while species-specific transport sectoralities, properties of assimilate allocation and unloading characteristics were measured using PET. Growth and carbon allocation within complex root systems were monitored in maize plants ( Zea mays ), and the results may be used to identify factors affecting root growth in natural substrates or in competition with roots of other plants. MRI–PET co-registration opens the door for non-invasive analysis of plant structures and transport processes that may change in response to genomic, developmental or environmental challenges. It is our aim to make the methods applicable for quantitative analyses of plant traits in phenotyping as well as in understanding the dynamics of key processes that are essential to plant performance.  相似文献   
74.
The rotifer, Brachionus calyciflorus, was grown with two algae species (Chlorella sp. and Scenedesmus obliquus) at different concentrations (0.1, 1 and 10 × 106 cells ml−1). The body size (lorica biovolume) of individual rotifer and their egg size were measured when the populations were roughly in the exponential phase of population growth. The body size of the rotifers differed significantly (P < 0.05) among the two algae species used, however this effect was not observed for egg size. The body size of rotifers fed on higher densities of Chlorella sp. (10 × 106 cells ml−1) was significantly larger than for those fed on lower and medium densities (0.1 and 1 × 106 cells ml−1). Body size and egg size of rotifers fed with different amounts of Scenedesmus did not differ significantly. The egg size was significantly larger at higher food level of Chlorella. A significantly positive correlation was observed between the adult rotifer body size and their egg size.  相似文献   
75.

Aims

Epidemiological studies report that individuals who exercise are less likely to abuse drugs. Preclinical studies report that exercise, in the form of treadmill or wheel running, reliably decreases the self-administration of psychomotor stimulants and opioids. To date, preclinical studies have only examined the effects of exercise on responding maintained by individual drugs and not by combinations of multiple drugs. This limits the translational appeal of these studies because polydrug abuse is common among substance abusing populations. The purpose of this study was to examine the effects of exercise on the self-administration of speedball, a combination of cocaine and heroin that is frequently encountered in intravenous drug abusing populations.

Main methods

Female rats were obtained at weaning and assigned to sedentary or exercising conditions. Sedentary rats were housed in standard cages that permitted no exercise beyond normal cage ambulation; exercising rats were housed in similar cages with an activity wheel. After 6 weeks, rats were implanted with intravenous catheters and trained to self-administer cocaine, heroin, and dose combinations of cocaine and heroin (i.e., speedball) on a progressive ratio schedule of reinforcement.

Key findings

Doses of speedball maintained greater levels of responding than corresponding doses of cocaine and heroin alone. Importantly, responding maintained by cocaine, heroin, and speedball was lower in exercising rats than sedentary rats.

Significance

These data indicate that exercise decreases the self-administration of speedball and suggest that exercise may reduce the abuse of drug combinations that have traditionally been resistant to treatment.  相似文献   
76.
In recent years, menstrual blood-derived stem cells (MenSCs) have been introduced as easily accessible and refreshing stem cell source without ethical considerations in the field of regenerative medicine. The aim of this study was to investigate in vitro cardiac differentiation capacity of MenSCs compared to bone marrow-derived stem cells (BMSCs) under two protocols using 5-aza-2′-deoxycytidine (5-aza) and basic fibroblast growth factor (bFGF). Our data revealed that differentiated MenSCs and BMSCs acquired some features of cardiomyocytes; however, degree of differentiation was dependent on the protocol. In a similar manner with BMSCs, differentiated MenSCs showed upper levels of mRNA/protein of late-stage cardiac markers under 5-aza stimulation and continuous treatment with bFGF (protocol 2) compared to those induced by 5-aza alone (protocol 1) evidencing the key role of bFGF in cardiac development of stem cells. Compared to corresponding undifferentiated cells differentiated MenSCs under protocol 2 showed remarkable expression of connexin-43 and TNNT2 at both gene and protein levels, whereas developed BMSCs under the same condition only expressed connextin-43 at the higher level. Superiority of protocol 2 over protocol 1 was confirmed by assessment of LDH and cTnI production by differentiated cells. Based on the accumulative data, our study provided convincing evidence that MenSCs have relatively higher capability to be differentiated toward cardiomyocyte compared with BMSCs. Furthermore, usage of bFGF and 5-aza to induce in vitro cardiac differentiation of MenSCs is highly recommended.  相似文献   
77.
Generation of adaptive immune response relies on efficient drainage or trafficking of antigen to lymph nodes for processing and presentation of these foreign molecules to T and B lymphocytes. Lymph nodes have thus become critical targets for new vaccines and immunotherapies. A recent strategy for targeting these tissues is direct lymph node injection of soluble vaccine components, and clinical trials involving this technique have been promising. Several biomaterial strategies have also been investigated to improve lymph node targeting, for example, tuning particle size for optimal drainage of biomaterial vaccine particles. In this paper we present a new method that combines direct lymph node injection with biodegradable polymer particles that can be laden with antigen, adjuvant, or other vaccine components. In this method polymeric microparticles or nanoparticles are synthesized by a modified double emulsion protocol incorporating lipid stabilizers. Particle properties (e.g. size, cargo loading) are confirmed by laser diffraction and fluorescent microscopy, respectively. Mouse lymph nodes are then identified by peripheral injection of a nontoxic tracer dye that allows visualization of the target injection site and subsequent deposition of polymer particles in lymph nodes. This technique allows direct control over the doses and combinations of biomaterials and vaccine components delivered to lymph nodes and could be harnessed in the development of new biomaterial-based vaccines.  相似文献   
78.

Background

Astroglial cells are activated following injury and up-regulate the expression of the intermediate filament proteins glial fibrillary acidic protein (GFAP) and vimentin. Adult mice lacking the intermediate filament proteins GFAP and vimentin (GFAP−/−Vim−/−) show attenuated reactive gliosis, reduced glial scar formation and improved regeneration of neuronal synapses after neurotrauma. GFAP−/−Vim−/− mice exhibit larger brain infarcts after middle cerebral artery occlusion suggesting protective role of reactive gliosis after adult focal brain ischemia. However, the role of astrocyte activation and reactive gliosis in the injured developing brain is unknown.

Methodology/Principal Findings

We subjected GFAP−/−Vim−/− and wild-type mice to unilateral hypoxia-ischemia (HI) at postnatal day 9 (P9). Bromodeoxyuridine (BrdU; 25 mg/kg) was injected intraperitoneally twice daily from P9 to P12. On P12 and P31, the animals were perfused intracardially. Immunohistochemistry with MAP-2, BrdU, NeuN, and S100 antibodies was performed on coronal sections. We found no difference in the hemisphere or infarct volume between GFAP−/−Vim−/− and wild-type mice at P12 and P31, i.e. 3 and 22 days after HI. At P31, the number of NeuN+ neurons in the ischemic and contralateral hemisphere was comparable between GFAP−/−Vim−/− and wild-type mice. In wild-type mice, the number of S100+ astrocytes was lower in the ipsilateral compared to contralateral hemisphere (65.0±50.1 vs. 85.6±34.0, p<0.05). In the GFAP−/−Vim−/− mice, the number of S100+ astrocytes did not differ between the ischemic and contralateral hemisphere at P31. At P31, GFAP−/−Vim−/− mice showed an increase in NeuN+BrdU+ (surviving newly born) neurons in the ischemic cortex compared to wild-type mice (6.7±7.7; n = 29 versus 2.9±3.6; n = 28, respectively, p<0.05), but a comparable number of S100+BrdU+ (surviving newly born) astrocytes.

Conclusions/Significance

Our results suggest that attenuation of reactive gliosis in the developing brain does not affect the hemisphere or infarct volume after HI, but increases the number of surviving newborn neurons.  相似文献   
79.
80.
Biogenesis, functions and fate of plant microRNAs   总被引:1,自引:0,他引:1  
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号