首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4704篇
  免费   287篇
  国内免费   13篇
  5004篇
  2024年   7篇
  2023年   76篇
  2022年   179篇
  2021年   252篇
  2020年   184篇
  2019年   283篇
  2018年   220篇
  2017年   160篇
  2016年   213篇
  2015年   235篇
  2014年   273篇
  2013年   393篇
  2012年   333篇
  2011年   351篇
  2010年   191篇
  2009年   180篇
  2008年   177篇
  2007年   167篇
  2006年   150篇
  2005年   129篇
  2004年   122篇
  2003年   105篇
  2002年   106篇
  2001年   49篇
  2000年   31篇
  1999年   39篇
  1998年   26篇
  1997年   24篇
  1996年   14篇
  1995年   12篇
  1994年   24篇
  1993年   13篇
  1992年   18篇
  1991年   17篇
  1990年   13篇
  1989年   14篇
  1988年   26篇
  1987年   13篇
  1986年   18篇
  1985年   18篇
  1984年   9篇
  1983年   14篇
  1982年   12篇
  1981年   8篇
  1980年   8篇
  1979年   13篇
  1977年   12篇
  1976年   10篇
  1973年   10篇
  1971年   7篇
排序方式: 共有5004条查询结果,搜索用时 8 毫秒
61.
Cotton (Gossypium hirsutum L.) is a key fiber crop of great commercial importance. Numerous phytopathogens decimate crop production by causing various diseases. During July-August 2018, leaf spot symptoms were recurrently observed on cotton leaves in Rahim Yar Khan, Pakistan and adjacent areas. Infected leaf samples were collected and plated on potato dextrose agar (PDA) media. Causal agent of cotton leaf spot was isolated, characterized and identified as Aspergillus tubingensis based on morphological and microscopic observations. Conclusive identification of pathogen was done on the comparative molecular analysis of CaM and β-tubulin gene sequences. BLAST analysis of both sequenced genes showed 99% similarity with A. tubingensis. Koch’s postulates were followed to confirm the pathogenicity of the isolated fungus. Healthy plants were inoculated with fungus and similar disease symptoms were observed. Fungus was re-isolated and identified to be identical to the inoculated fungus. To our knowledge, this is the first report describing the involvement of A. tubingensis in causing leaf spot disease of cotton in Pakistan and around the world.  相似文献   
62.
Biological Trace Element Research - For physiological and biochemical studies, it is considered essential to have knowledge about the accumulation of mineral elements in plants and their...  相似文献   
63.
Plant Cell, Tissue and Organ Culture (PCTOC) - Nano-technology has changed the properties of metal elements’ delivery into and effect on living systems. The current study, first, evaluated...  相似文献   
64.
65.

Candida albicans (C. albicans) cell wall beta-glucan has been considered as a potential agent in the treatment of cancers due to its anti-tumor properties. Therefore, in the present study, we investigated the anti-cancer effects of Candida cell wall beta-glucan on Lewis lung carcinoma cell line (LL/2) cells. Beta-glucan of C. albicans cell wall was extracted. LL/2 cell line was cultured, then sphere cells and parental cells were exposed to the different concentrations of beta-glucan extracted from C. albicans (10–6000 μg/ml), for 24, 48 and 72 h. Cytotoxicity of beta-glucan was assayed by MTT test, then RNA extracted from cells population (treated and untreated cells), cDNA synthetized and expression level of Sox2, Oct4, C-myc, Nanog genes were also investigated using Real-time methods. At optimal concentrations of 800 and 1000 μg/ml, the extracted beta-glucan showed a significant cytotoxic effect on both parental and sphere cell populations (p?<?0.05). Real-time PCR analysis revealed a decreased expression of Oct4 and Sox2 genes in treatment of cells with beta-glucan compared with control group. Since the extracted beta-glucan showed an inhibitory effect on the expression of Oct4 and Sox2 genes involved in LL/2 metastasis, therefore, beta-glucan can be considered as an anti-tumor agent because of its anti-metastatic properties, however, more in vitro and in vivo studies are needed to provide further evidence on this topic in the future.

  相似文献   
66.
Mimicking the structure of extracellular matrix (ECM) of myocardium is necessary for fabrication of functional cardiac tissue. The superparamagnetic iron oxide nanoparticles (SPIONs, Fe3O4), as new generation of magnetic nanoparticles (NPs), are highly intended in biomedical studies. Here, SPION NPs (1 wt%) were synthesized and incorporated into silk-fibroin (SF) electrospun nanofibers to enhance mechanical properties and topography of the scaffolds. Then, the mouse embryonic cardiac cells (ECCs) were seeded on the scaffolds for in vitro studies. The SPION NPs were studied by scanning electron microscope (SEM), X-ray diffraction (XRD), and transmission electron microscope (TEM). SF nanofibers were characterized after incorporation of SPIONs by SEM, TEM, water contact angle measurement, and tensile test. Furthermore, cytocompatibility of scaffolds was confirmed by 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. SEM images showed that ECCs attached to the scaffolds with elongated morphologies. Also, the real-time PCR and immunostaining studies approved upregulation of cardiac functional genes in ECCs seeded on the SF/SPION-casein scaffolds including GATA-4, cardiac troponin T, Nkx 2.5, and alpha-myosin heavy chain, compared with the ones in SF. In conclusion, incorporation of core-shells in SF supports cardiac differentiation, while has no negative impact on ECCs' proliferation and self-renewal capacity.  相似文献   
67.
Abstract

The interaction ability of bovine serum albumin (BSA) with 2,6-divanillylidenecyclohexanone (DVH) as a stable curcumin derivative was investigated using fluorescence and circular dichroism (CD) spectroscopy techniques under simulative physiological conditions (pH = 7.2). Following the obtained results of binding studies, bovine serum albumin nanoparticles (BSANPs) were synthesized and characterized using Fourier transform infrared spectroscopy (FT-IR), filed emission scanning electron microscopy (FE-SEM), atomic force microscope (AFM) and dynamic light scattering (DLS). The stable BSANPs showed a spherical shape with a diameter of 149.14?±?46.69?nm and the formulation of BSA had no change during the fabrication process. DVH was loaded on BSANPs (DVH@BSANPs) and the release studies showed sustained release of DVH from BSANPs. The validation of DVH@BSANPs system confirmed that the Fickian release mechanism of DVH followed on Korsmeyer–Pepas model. The in vitro studies on HFFF2 and MDA-MB-231 were investigated using MTT assay, DAPI and annexinV/PI staining that showed biocompatible BSANPs reduced the cytotoxicity of DVH in normal cell lines significantly, and antitumor activity of DVH was increased when it was loaded onto BSANPs without necrosis. These results suggest that DVH@BSANPs are a novel biocompatible sustained release system for effective therapeutic approach.

Communicated by Ramaswamy H. Sarma  相似文献   
68.
69.
Environmental pollution in addition to direct damage on plant growth, with the destruction of biological control agents, causes indirect damage to plants. The aim of this research was to study the effects of different concentrations (0, 500, 1000, 1500 and 2000 ppm) of heavy metals including Ag, Co, Cu, Fe, Hg, Mn, Pb and Zn on the mycelial growth and to assess the fungicidal or fungistatic effects of these salts on five Nematophagus fungi including Trichoderma harzianum (T8), Trichoderma virens (T21), Trichoderma hamatum (T9), Pochonia chlamydosporia var. chlamydosporia and Arthrobotrys oligospora. The results show that Ag, Co, Cu, Fe and Hg could stop the mycelium growth of all fungi, but Mn, Pb and Zn cannot inhibit the growth of these fungi completely. Among the first group, Hg and Cu stopped the growth of fungi even in 500 ppm. Among these metals that inhibit the growth of fungi, Cu has fungistatic effect and others have fungicide effect. The experiment was conducted in vitro condition, using potato dextrose agar (PDA) under complete randomised design with four replications. The data of mycelium growth were recorded at seven days after inoculation at 25 ± 2°C.  相似文献   
70.
The bacteria Bacillus thuringiensis mutant is highly producing melanin pigment with increased ultra violet resistance and insecticidal activity against the potato tuber moth Phthorimaea operculella (Zeller). The results showed that the high decrease of crystal protein formation rate ranged from 100% (B.t.EMS-M2 and B.t.EMS-M6) to 91.82% (B.t.EMS-M9). The EMS–UV-induced mutants (B.t.EMS–UV-2h-1, B.t. EMS–UV-2h-2, B.t.EMS–UV-2h-3, B.t.EMS–UV-2h-5, B.t.EMS–UV-4h-1, B.t.EMS–UV-4h-3 and B.t.EMS–UV-6h-2) showed 100% decrease in the crystal protein formation. Results also showed that the growth rate of B. thuringiensis isolates was detected by measuring the light absorption of culture broth (BP media at pH 8) at the wavelength of 600 nm. The absorbance values of the standard melanin were 2.055 and 0.134 at wavelengths of 226.5 and 602 nm, respectively. This means that the maximum absorbance at wavelength was 226.5 nm, this result is similar to that of the synthetic melanin which has the absorbance of 226 nm. Our experiments detected that the pigment extracted from the mutant isolate B.t.EMS-M3 (EMS-induced mutant) gave the maximum value of absorbance (2.615) at wavelength of 227.5 nm that was similar to standard melanin which gave absorbance value about 2.055 at a wavelength of 226.5 nm. This may be due to the genetic alterations that happened to the mutant isolates due to the mutation by EMS or/and UV irradiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号