首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1364篇
  免费   91篇
  国内免费   4篇
  2024年   4篇
  2023年   25篇
  2022年   56篇
  2021年   97篇
  2020年   91篇
  2019年   166篇
  2018年   98篇
  2017年   78篇
  2016年   82篇
  2015年   72篇
  2014年   87篇
  2013年   123篇
  2012年   108篇
  2011年   88篇
  2010年   57篇
  2009年   50篇
  2008年   45篇
  2007年   18篇
  2006年   26篇
  2005年   20篇
  2004年   20篇
  2003年   19篇
  2002年   16篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
  1988年   2篇
  1985年   1篇
排序方式: 共有1459条查询结果,搜索用时 296 毫秒
991.
hGSTA3-3 (human Alpha-class glutathione transferase 3-3) efficiently catalyses steroid Delta(5)-Delta(4) double-bond isomerization in vitro, using glutathione as a cofactor. This chemical transformation is an obligatory reaction in the biosynthesis of steroid hormones and follows the oxidation of 3beta-hydroxysteroids catalysed by 3beta-HSD (3beta-hydroxysteroid dehydrogenase). The isomerization has commonly been ascribed to a supplementary function of 3beta-HSD. The present study is the first to provide evidence that hGSTA3-3 contributes to this step in steroid hormone biosynthesis in complex cellular systems. First, we find glutathione-dependent Delta(5)-Delta(4) isomerase activity in whole-cell extracts prepared from human steroidogenic cells. Secondly, effective inhibitors of hGSTA3-3 dramatically decrease the conversion of Delta(5)-androstene-3,17-dione into Delta(4)-androstene-3,17-dione in cell lysates. Thirdly, we show that RNAi (RNA interference) targeting hGSTA3-3 expression decreases by 30% the forskolin-stimulated production of the steroid hormone progesterone in a human placental cell line. This effect is achieved at low concentrations of two small interfering RNAs directed against distinct regions of hGSTA3-3 mRNA, and is weaker in unstimulated cells, in which hGSTA3-3 expression is low. The results concordantly show that hGSTA3-3 makes a significant contribution to the double-bond isomerization necessary for steroid hormone biosynthesis and thereby complements the indispensable 3beta-hydroxysteroid oxidoreductase activity of 3beta-HSD. The results indicate that the lower isomerase activity of 3beta-HSD is insufficient for maximal rate of cellular sex hormone production and identify hGSTA3-3 as a possible target for pharmaceutical intervention in steroid hormone-dependent diseases.  相似文献   
992.
993.
Chick embryos are a significant historical research model in basic and applied sciences. The embryonated eggs have been used for virus inoculation in order to vaccine production for nearly a century. Recently, avian eggs and cell lines derived from embryonated eggs have found wide application in biotechnology. This review will discuss about the unique characteristics of avian eggs in terms of safety, large scale and economical production of recombinant proteins. This system also provides the human‐like glycosylation on target proteins and therefore can be considered as a suitable host for biomanufacturing of humanized monoclonal antibodies and therapeutic proteins. Avian derived cell lines are an alternative for rapid vaccine manufacturing during a pandemic. Based on the latest knowledge in cell and animal transgenesis, the currently available germ cell‐mediated gene transfer system provides a more efficient strategy in gene targeting and creation of transgenic birds that lead to advancements in industrial, biotechnology, and biological research applications. This review covers the recent development of avian fertilized eggs and related cell lines in a variety of human biopharmaceuticals and viral vaccine manufacturing.  相似文献   
994.
<正>Dear Editor,Acute flaccid paralysis(AFP)is a complex syndrome often caused by polioviruses.While most countries have eradicated wild polioviruses by vaccination,AFP still remains a health problem in these countries.Most studies have highlighted non-polio enteroviruses(NPEVs)as  相似文献   
995.
Increasing interest in protein immobilization on surfaces has heightened the need for techniques enabling layer‐by‐layer protein attachment. Here, we report a technique for controlling enzyme‐mediated immobilization of layers of protein on the surface using a genetically encoded protecting group. An enterokinase‐cleavable peptide sequence was inserted at the N‐terminus of bifunctional fluorescent proteins containing Sortase A substrate recognition tags at both ends to control Sortase A‐mediated protein immobilization on the surface layer‐by‐layer. Efficient, sequential immobilization of a second layer of protein using Sortase A required removal of the N‐terminal protecting group, suggesting the method enables multilayer synthesis using cyclic deprotection and coupling steps. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:824–831, 2017  相似文献   
996.
997.
Elsewhere, we reported the safety and efficacy results of a multicenter phase 3 trial of recombinant human alpha -galactosidase A (rh-alpha GalA) replacement in patients with Fabry disease. All 58 patients who were enrolled in the 20-wk phase 3 double-blind, randomized, and placebo-controlled study received subsequently 1 mg/kg of rh-alpha GalA (agalsidase beta, Fabrazyme, Genzyme Corporation) biweekly in an ongoing open-label extension study. Evidence of long-term efficacy, even in patients who developed IgG antibodies against rh- alpha GalA, included the continuously normal mean plasma globotriaosylceramide (GL-3) levels during 30 mo of the extension study and the sustained capillary endothelial GL-3 clearance in 98% (39/40) of patients who had a skin biopsy taken after treatment for 30 mo (original placebo group) or 36 mo (original enzyme-treated group). The mean serum creatinine level and estimated glomerular filtration rate also remained stable after 30-36 mo of treatment. Infusion-associated reactions decreased over time, as did anti-rh- alpha GalA IgG antibody titers. Among seroconverted patients, after 30-36 mo of treatment, seven patients tolerized (no detectable IgG antibody), and 59% had > or =4-fold reductions in antibody titers. As of 30 mo into the extension trial, three patients were withdrawn from the study because of positive serum IgE or skin tests; however, all have been rechallenged successfully at the time of this report. Thus, enzyme replacement therapy for 30-36 mo with agalsidase beta resulted in continuously decreased plasma GL-3 levels, sustained endothelial GL-3 clearance, stable kidney function, and a favorable safety profile.  相似文献   
998.
Rafie-Kolpin M  Han AP  Chen JJ 《Biochemistry》2003,42(21):6536-6544
In heme deficiency, protein synthesis is inhibited by the activation of the heme-regulated eIF2alpha kinase (HRI) through its multiple autophosphorylation. Autophosphorylation sites in HRI were identified in order to investigate their functions. We found that there were eight major tryptic phosphopeptides of HRI activated in heme deficiency. In this report we focused on the role of autophosphorylation at Thr483 and Thr485 in the activation loop of HRI. Disruption of the autophosphorylation of Thr485, but not Thr483, resulted in a lower autokinase activity and locked Thr485Ala HRI in a hypophosphorylated state. Most importantly, autophosphorylation of Thr485, but not Thr483, was essential for attaining eIF2alpha kinase activity of HRI. In addition, autophosphorylation of Thr485 was necessary for arsenite-induced activation of the eIF2alpha kinase activity of HRI, while autophosphorylation at Thr483 was not required for activation by arsenite. The function of Thr490, another conserved Thr residue in the activation loop of HRI, was also investigated. Mutations of Thr490 to either Ala or Asp resulted in reduced autokinase activity and loss of eIF2alpha kinase activity in heme deficiency or upon arsenite treatment. Since Thr490 was not identified as an autophosphorylated site, it is likely that Thr490 itself might be critical for the catalytic activity of HRI. Importantly, Thr485 was very poorly phosphorylated in Thr490 mutant HRI. Collectively, our results demonstrate that autophosphorylation of Thr485 is essential for the hyperphosphorylation and activation of HRI and is required for the acquisition of the eIF2alpha kinase activity.  相似文献   
999.
Decolourization of wastewater from a textile plant by a marine Aspergillus niger was studied. The fungus was previously isolated from Gorgan Bay in the Caspian Sea. The kinetics of decolourization was studied by varying energy sources. The best decolourization was achieved when sucrose was used as source of carbon and energy. NH4+ ion was demonstrated to be the best nitrogen source. Color reduction was found to increase from 80-97% as inoculum concentration increased from 0.04-1.0 g/L. A minimum inoculum of 0.2 g/L is necessary to achieve decolourization. The optimal temperature for the growth of A. niger on Baftkar wastewater is found to be 30 degrees C. 90-96% colour reduction is achieved in 19-20 hr of contact of mycelium cell with the wastewater. Colour reduction in a continuous column reactor of 70% was obtained using treated mycelium (NaOH, 90 degrees C) after 1 hr.  相似文献   
1000.
The endoplasmic reticulum (ER) is the major site for folding and sorting of newly synthesized secretory cargo proteins. One central regulator of this process is the quality control machinery, which retains and ultimately disposes of misfolded secretory proteins before they can exit the ER. The ER quality control process is highly effective and mutations in cargo molecules are linked to a variety of diseases. In mammalian cells, a large number of secretory proteins, whether membrane bound or soluble, are asparagine (N)-glycosylated. Recent attention has focused on a sugar transferase, UDP-Glucose: glycoprotein glucosyl transferase (UGGT), which is now recognized as a constituent of the ER quality control machinery. UGGT is capable of sensing the folding state of glycoproteins and attaches a single glucose residue to the Man9GlcNAc2 glycan of incompletely folded or misfolded glycoproteins. This enables misfolded glycoproteins to rebind calnexin and reenter productive folding cycles. Prolonging the time of glucose addition on misfolded glycoproteins ultimately results in either the proper folding of the glycoprotein or its presentation to an ER associated degradation machinery.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号