首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1516篇
  免费   109篇
  国内免费   4篇
  2024年   4篇
  2023年   26篇
  2022年   53篇
  2021年   108篇
  2020年   99篇
  2019年   185篇
  2018年   110篇
  2017年   85篇
  2016年   96篇
  2015年   83篇
  2014年   94篇
  2013年   139篇
  2012年   122篇
  2011年   102篇
  2010年   61篇
  2009年   53篇
  2008年   49篇
  2007年   22篇
  2006年   31篇
  2005年   25篇
  2004年   22篇
  2003年   20篇
  2002年   17篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1986年   1篇
  1985年   1篇
  1978年   1篇
排序方式: 共有1629条查询结果,搜索用时 15 毫秒
61.
62.
Trunk diseases are potential threats for almond productivity and longevity worldwide, including Iran. In a recent survey on fungal species associated with trunk diseases of almonds in north‐western Iran, Collophora isolates (tentatively identified as Collophora hispanica) were recovered with high frequency from wood samples with internal necrosis and brown to black vascular streaking of almond trees showing symptoms of decline. However, the pathogenic potential of Collophora isolates on almond trees in Iran remains unproven. In this study, the identity of the isolates was further confirmed as C. hispanica based on a combination of morphological data and sequence data of ITS‐rDNA region, and pathogenicity of C. hispanica isolates on almond was evaluated using excised shoot method and in greenhouse experiments. Collophora hispanica isolates induced lesions statistically different from the control, in both excised shoot method and greenhouse assays. Significant differences were observed among the isolates in the length of the lesion induced on wood. Collophora hispanica should be considered as the main trunk pathogens of almond trees in north‐western region of Iran. The distribution and host range of this new pathogen on almond remains to be studied.  相似文献   
63.
The present study was designed to assess the influence of geographical factors on essential oil (EO) composition, along with antiradical potential and phytochemical contents of Ferulago angulata (Schltdl .) Boiss (Apiaceae) extracts for the first time. The aerial parts were hydrodistilled by Clevenger apparatus and subjected to gas chromatography coupled with flame ionization detector (GC/FID) and mass spectroscopy (GC/MS). The EO yields were significantly different from populations ‘Mongar’ (south‐slope, 3000 m) with 1.34±0.06 % and ‘Male‐Amiri’ (north slope, 2600 m) with 0.18±0.05 % of total oil. Thirty‐nine compounds were identified from the EOs of nine populations. α‐Pinene was the predominant component ranging from 20.84 to 49.06 % in ‘Gandomkar’ (north‐slope, 2500 m) and ‘Mongar’ (3000 m), respectively. The methanolic extract of ‘Mongar’ (north‐slope at 2500 m) possessed the highest total phenolic contents. Also, this population logically exhibited potent antiradical activity using both 1,1‐diphenyl‐2‐picrylhydrazyl (DPPH) and oxygen radical absorbance capacity (ORAC) assays with EC50 of 42.07±4.12 μg/mL and 8.34±0.21 mmol Trolox® equivalents/g, respectively. Due to its moderate free‐radical scavenging potential and high α‐pinene content, the population ‘Mongar’ might be considered as a perspective raw material in food and phytopharmaceutical industries.  相似文献   
64.
A new series of coumarin‐3‐carboxamide‐N‐morpholine hybrids 5a – 5l was designed and synthesized as cholinesterases inhibitors. The synthetic approach for title compounds was started from the reaction between 2‐hydroxybenzaldehyde derivatives and Meldrum's acid to afford corresponding coumarin‐3‐carboxylic acids. Then, amidation of the latter compounds with 2‐morpholinoethylamine or N‐(3‐aminopropyl)morpholine led to the formation of the compounds 5a – 5l . The in vitro inhibition screen against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) revealed that most of the synthesized compounds had potent AChE inhibitory while their BuChE inhibitions are moderate to weak. Among them, propylmorpholine derivative 5g (N‐[3‐(morpholin‐4‐yl)propyl]‐2‐oxo‐2H‐chromene‐3‐carboxamide) bearing an unsubstituted coumarin moiety and ethylmorpholine derivative 5d (6‐bromo‐N‐[2‐(morpholin‐4‐yl)ethyl]‐2‐oxo‐2H‐chromene‐3‐carboxamide) bearing a 6‐bromocoumarin moiety showed the most activity against AChE and BuChE, respectively. The inhibitory activity of compound 5g against AChE was 1.78 times more than that of rivastigmine and anti‐BuChE activity of compound 5d is approximately same as rivastigmine. Kinetic and docking studies confirmed the dual binding site ability of compound 5g to inhibit AChE.  相似文献   
65.
UV‐induced synthesis/accumulation of photoprotective pigments and antioxidant activity were investigated in the hot‐spring cyanobacterium Leptolyngbya cf. fragilis. The results indicated that UV radiation may induce biosynthesis of carotenoids, allophycocyanin, phycoerythrin, and scytonemin while phycocyanin degrades in response to longtime UV radiation. Moreover, pigment composition of L. cf. fragilis was significantly altered with increasing UV radiation times, probably due to destruction and resynthesis of accessory pigments as an adaptation strategy to UV stress. The in vitro antioxidant analysis of different extracts of UV treated cyanobacteria exhibited concentration‐dependent antioxidant activity. Ethyl acetate extract of 72 h UV treatment showed maximum total antioxidant activity (IC50 = 71.73 ± 5.3 μg mL?1) followed by ethyl acetate control (non‐UV irradiated) extract (IC50 = 109.43 ± 2.76 μg mL?1). This is the first report for the UV‐induced synthesis of photoprotective pigments and their antioxidant activity in L. cf. fragilis.  相似文献   
66.
Nano and bulk-forms of zinc oxide (ZnO) are used extensively in industry and consequently may accumulate in the environment. However, there is little information available on the comparative effects of these forms during the critical early stages of plant life. Furthermore, the role of chelating agents, which affect the bioavailability of metals, in ameliorating plant stress due to exposure to nano and bulk-forms of ZnO is not well characterised. In this study, the effects of different concentrations (0.5, 2.5, 5, 10, 50 and 100 ppm) of nano ZnO (22 nm) and bulk ZnO (natural form, 1000 nm) with and without organic (citrate) and inorganic (EDTA) chelators on germination and seedling growth, and oxidative stress markers of Nicotiana tabacum L. were compared. Chelators (without ZnO) enhanced root growth, whilst ZnO negatively affected seedling growth. ZnO toxicity was often mitigated by adding chelators, especially citrate, although at the highest levels (50 and 100?ppm) of ZnO, toxicity was more pronounced when chelated with EDTA, but was decreased with citrate. Collectively, our findings provide important information regarding the different morpho-physiological and biochemical effects of bulk and nano ZnO and organic and inorganic chelators (citrate and EDTA), which are all prevalent in the environment.  相似文献   
67.
Twenty three fused carbazole–imidazoles 6a–w were designed, synthesized, and screened as new α-glucosidase inhibitors. All the synthesized fused carbazole-imidazoles 6a-w were found to be more active than acarbose (IC50?=?750.0?±?1.5?µM) against yeast α-glucosidase with IC50 values in the range of 74.0?±?0.7–298.3?±?0.9?µM. Kinetic study of the most potent compound 6v demonstrated that this compound is a competitive inhibitor for α-glucosidase (Ki value?=?75?µM). Furthermore, the in silico studies of the most potent compounds 6v and 6o confirmed that these compounds interacted with the key residues in the active site of α-glucosidase.  相似文献   
68.
69.
The mechanical property of bone tissue scaffolds is one of the most important aspects in bone tissue engineering that has remained problematic. In our previous study, we fabricated a three‐dimensional scaffold from nano‐hydroxyapatite/gelatin (nHA/Gel) and investigated its efficiency in promoting bone regeneration both in vitro and in vivo. In the present study, the effect of adding silicon carbide (SiC) on the mechanical and biological behaviors of the nHA/Gel/SiC and bone regeneration in vivo were determined. nHA and SiC were synthesized and characterized by the X‐ray diffraction pattern and transmission electron microscope image. Layer solvent casting, freeze drying, and lamination techniques were applied to prepare these scaffolds. Then, the biocompatibility and cell adhesion behavior of the synthesized nHA/Gel/SiC scaffolds were investigated. For in vivo studies, rats were categorized into three groups: blank defect, blank scaffold, and rat bone marrow mesenchymal stem cells (rBM‐MSCs)/scaffold. After 1, 4, and 12 weeks post‐injury, the rats were sacrificed and the calvaria were harvested. Sections with a thickness of 5 µm thickness were prepared and stained with hematoxylin–eosin and Masson's Trichrome, and immunohistochemistry was performed. Our results showed that SiC effectively increased the mechanical properties of the nHA/Gel/SiC scaffold. No significant differences were observed in biocompatibility, cell adhesion, and cytotoxicity of the nHA/Gel/SiC in comparison with the nHA/Gel nanocomposite. Based on histological and immunohistochemical studies, both osteogenesis and collagenization were significantly higher in the rBM‐MSCs/scaffold group, quantitatively and qualitatively. The present study strongly suggests the potential of SiC as an alternative strategy to improve the mechanical and biological properties of bone tissue engineering scaffolds, and shows that the pre‐seeded nHA/Gel/SiC scaffold with rBM‐MSCs improves osteogenesis in the engineered bone implant.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号