首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1683篇
  免费   111篇
  国内免费   5篇
  2024年   6篇
  2023年   31篇
  2022年   58篇
  2021年   109篇
  2020年   108篇
  2019年   196篇
  2018年   124篇
  2017年   100篇
  2016年   96篇
  2015年   83篇
  2014年   113篇
  2013年   163篇
  2012年   140篇
  2011年   107篇
  2010年   60篇
  2009年   61篇
  2008年   59篇
  2007年   27篇
  2006年   32篇
  2005年   26篇
  2004年   24篇
  2003年   24篇
  2002年   19篇
  2001年   3篇
  2000年   3篇
  1999年   4篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1992年   1篇
  1991年   4篇
  1988年   3篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
  1979年   2篇
排序方式: 共有1799条查询结果,搜索用时 781 毫秒
31.
Nuclear pore complex (NPC) is the only corridor for macromolecules exchange between nucleus and cytoplasm. NPC and its components, nucleoporins, play important role in the diverse physiological processes including macromolecule exchange, chromosome segregation, apoptosis and gene expression. Recent reports also suggest involvement of nucleoporins in carcinogenesis. Applying proteomics, we analyzed expression pattern of the NPC components in a newly established esophageal cancer cell line from Persia (Iran), the high-risk region for esophageal cancer. Our results indicate overexpression of Hsc70 and downregulation of subunit alpha type-3 of proteasome, calpain small subunit 1, and eIF5A-1. Among these proteins, Hsc70 and eIF5A-1 are in direct interaction with NPC and involved in the nucleocytoplasmic exchange. Hsc70 plays a critical role as a chaperone in the formation of a cargo–receptor complex in nucleocytoplasmic transport. On the other hand, it is an NPC-associated protein that binds to nucleoporins and contributes in recycling of the nucleocytoplasmic transport receptors in mammals and affects transport of proteins between nucleus and cytoplasm. The other nuclear pore interacting protein: eIF5A-1 binds to the several nucleoporins and participates in nucleocytoplasmic transport. Altered expression of Hsc70 and eIF5A-1 may cause defects in nucleocytoplasmic transport and play a role in esophageal carcinogenesis.  相似文献   
32.
Chemical functionalization of a zigzag carbon nanotube (CNT) with 1, 3-cyclohexadiene (CHD), previously reported by experimentalists, has been investigated in the present study using density functional theory in terms of energetic, geometric, and electronic properties. Then, the thermodynamic and kinetic feasibility of H2 dissociation on the pristine and functionalized CNTs have been compared. The dissociation energy of the H2 molecule on the pristine and functionalized CNT has been calculated to be about ?1.00 and ?1.55 eV, while the barrier energy is found to be about 3.70 and 3.51 eV, respectively. Therefore, H2 dissociation is thermodynamically more favorable on the CNT-CHD system than on the pristine tube, while the favorability of the dissociation on the pristine tube is higher in term of kinetics.  相似文献   
33.
We have studied the adsorption of atomic and molecular fluorines on a BC3 nanotube by using density functional calculations. It was found that the adsorption of atomic fluorine on a C atom of the tube surface is energetically more favorable than that on a B atom by about 0.97 eV. The adsorption of atomic fluorine on both C and B atoms significantly affects the electronic properties of the BC3 tube. The HOMO-LUMO energy gap is considerably reduced from 2.37 to 1.50 and 1.14 eV upon atomic F adsorption on B and C atoms, respectively. Molecular fluorine energetically tends to be dissociated on B atoms of the tube surface. The associative and dissociative adsorption energies of F2 were calculated to be about ?0.42 and ?4.79 eV, respectively. Electron emission density from BC3 nanotube surface will be increased upon both atomic and molecular fluorine adsorptions due to work function decrement.  相似文献   
34.
Ahmadi  Tayebeh  Shabani  Leila  Sabzalian  Mohammad R. 《Protoplasma》2020,257(4):1231-1242

The popularity of lemon balm in conventional medicine is suggested by the existence of two groups of compounds, namely essential oil and phenylpropanoids pathway derivatives. One of the promising approaches to improve tolerance to drought stress induced oxidative damage in seedlings grown in greenhouses and plant growth chambers is replacing the traditional and high-cost light technologies by recently developed light emitting diodes (LED). In this experiment, we analyzed the role of various LED lights including red (R), blue (B), red (70%) + blue (30%) (RB), and white (W) as well as normal greenhouse light (as control) to stimulate defense mechanisms against drought stress in two genotypes of Melissa officinalis L. The present study demonstrates that pre-treatment with LEDs with high-intensity output for 4 weeks alleviated harmful effects of drought stress in the two genotypes. Under drought stress, RB LED pre-treated plantlets of the two genotypes exhibited the highest relative growth index of shoot and root and total phenolic and anthocyanin content compared to those irradiated with other LEDs and greenhouse lights. The highest amount of malondialdehyde level was detected in R LED exposed plants. In response to drought, LED-exposed plants especially RB light-irradiated plants of the two genotypes maintained significantly higher antioxidant and phenylalanine ammonia-lyase (PAL) enzyme activities and higher expression level of the PAL1 and 4CL-1 genes compared to those irradiated with greenhouse light. We concluded that RB LED light provides a better growth condition and resistance to drought stress for the two genotypes of lemon balm by the highest antioxidant activity and the least amount of damage to the cell membranes. Our data suggest that LED light pre-treatments as moderate stress activate antioxidant systems, enhance the scavenging of ROS and induce drought stress tolerance in the two genotypes of lemon balm plants.

  相似文献   
35.
Plant Cell, Tissue and Organ Culture (PCTOC) - Nano-technology has changed the properties of metal elements’ delivery into and effect on living systems. The current study, first, evaluated...  相似文献   
36.

Candida albicans (C. albicans) cell wall beta-glucan has been considered as a potential agent in the treatment of cancers due to its anti-tumor properties. Therefore, in the present study, we investigated the anti-cancer effects of Candida cell wall beta-glucan on Lewis lung carcinoma cell line (LL/2) cells. Beta-glucan of C. albicans cell wall was extracted. LL/2 cell line was cultured, then sphere cells and parental cells were exposed to the different concentrations of beta-glucan extracted from C. albicans (10–6000 μg/ml), for 24, 48 and 72 h. Cytotoxicity of beta-glucan was assayed by MTT test, then RNA extracted from cells population (treated and untreated cells), cDNA synthetized and expression level of Sox2, Oct4, C-myc, Nanog genes were also investigated using Real-time methods. At optimal concentrations of 800 and 1000 μg/ml, the extracted beta-glucan showed a significant cytotoxic effect on both parental and sphere cell populations (p?<?0.05). Real-time PCR analysis revealed a decreased expression of Oct4 and Sox2 genes in treatment of cells with beta-glucan compared with control group. Since the extracted beta-glucan showed an inhibitory effect on the expression of Oct4 and Sox2 genes involved in LL/2 metastasis, therefore, beta-glucan can be considered as an anti-tumor agent because of its anti-metastatic properties, however, more in vitro and in vivo studies are needed to provide further evidence on this topic in the future.

  相似文献   
37.
38.
Mimicking the structure of extracellular matrix (ECM) of myocardium is necessary for fabrication of functional cardiac tissue. The superparamagnetic iron oxide nanoparticles (SPIONs, Fe3O4), as new generation of magnetic nanoparticles (NPs), are highly intended in biomedical studies. Here, SPION NPs (1 wt%) were synthesized and incorporated into silk-fibroin (SF) electrospun nanofibers to enhance mechanical properties and topography of the scaffolds. Then, the mouse embryonic cardiac cells (ECCs) were seeded on the scaffolds for in vitro studies. The SPION NPs were studied by scanning electron microscope (SEM), X-ray diffraction (XRD), and transmission electron microscope (TEM). SF nanofibers were characterized after incorporation of SPIONs by SEM, TEM, water contact angle measurement, and tensile test. Furthermore, cytocompatibility of scaffolds was confirmed by 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. SEM images showed that ECCs attached to the scaffolds with elongated morphologies. Also, the real-time PCR and immunostaining studies approved upregulation of cardiac functional genes in ECCs seeded on the SF/SPION-casein scaffolds including GATA-4, cardiac troponin T, Nkx 2.5, and alpha-myosin heavy chain, compared with the ones in SF. In conclusion, incorporation of core-shells in SF supports cardiac differentiation, while has no negative impact on ECCs' proliferation and self-renewal capacity.  相似文献   
39.
Venous and arterial thrombosis are conditions that have a considerable burden if left untreated. The hypoxia-induced by the occluded vessel can disrupt the circulation of any organ, the cornerstone of treating thrombosis is rapid diagnosis and appropriate treatment. Diagnosis of thrombosis may be made by using laboratory tests or imaging techniques in individuals who have clinical manifestations of a thrombotic event. The use of serum micro ribonucleic acids (RNAs) has recently been applied to the diagnosis of thrombosis. These small RNA molecules are emerging as new diagnostic markers but have had very limited applications in vascular disease. Most of the articles provided various microRNAs with different levels of accuracy. However, there remains a lack of an appropriate panel of the most specific microRNA in the literature. The purpose of the present review was to summarize the existing data on the use of microRNAs as a diagnostic biomarker for venous thrombosis.  相似文献   
40.
Autophagy is considered as an important mechanism for maintaining homeostasis and responsible for the degradation of superfluous or potentially toxic components and organelles. Autophagy impairment is associated with a number of pathological conditions, such as aging, neurological disorders, cancer, and infection. Autophagy also plays a significant role in cancer chemotherapy. The multiple cancer drugs have been notably developed with the strategy of autophagy modulation. Statins, 3-hydroxy-3-methyl-glutaryl-CoA inhibitors, are known due to their efficacy in decreasing low-density lipoprotein and extensively used for the management of cardiovascular diseases. Statins have other therapeutic and biological activities, such as antioxidant, anti-inflammatory, antitumor, and neuroprotective known as pleiotropic effects. It seems that statins are capable of targeting various signaling pathways in the induction of their great pharmacological effects. At the present study, we demonstrate the therapeutic effects of statins mediated via autophagy regulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号