首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14615篇
  免费   1433篇
  国内免费   99篇
  16147篇
  2022年   140篇
  2021年   241篇
  2020年   145篇
  2019年   183篇
  2018年   224篇
  2017年   191篇
  2016年   332篇
  2015年   610篇
  2014年   668篇
  2013年   794篇
  2012年   971篇
  2011年   979篇
  2010年   651篇
  2009年   543篇
  2008年   758篇
  2007年   804篇
  2006年   775篇
  2005年   747篇
  2004年   731篇
  2003年   678篇
  2002年   724篇
  2001年   162篇
  2000年   139篇
  1999年   186篇
  1998年   206篇
  1997年   170篇
  1996年   149篇
  1995年   148篇
  1994年   135篇
  1993年   135篇
  1992年   124篇
  1991年   112篇
  1990年   133篇
  1989年   123篇
  1988年   117篇
  1987年   118篇
  1986年   106篇
  1985年   109篇
  1984年   120篇
  1983年   130篇
  1982年   137篇
  1981年   119篇
  1980年   102篇
  1979年   69篇
  1978年   87篇
  1977年   76篇
  1976年   68篇
  1975年   61篇
  1974年   71篇
  1973年   56篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Previous studies have shown that docosahexaenoic acid (DHA) has an antihypertensive effect in spontaneously hypertensive rats (SHR). To investigate possible mechanisms for this effect, vascular pathology and reactivity were determined in SHR treated with dietary DHA. SHR (7 weeks) were fed a purified diet with either a combination of corn/soybean oils or a DHA-enriched oil for 6 weeks. Histological evaluation of heart tissue, aorta, coronary, and renal arteries was performed. Vascular responses were determined in isolated aortic rings. Contractile responses to agonists, including norepinephrine (10(-9) to 10(-4) M), potassium chloride (5-55 mM), and angiotensin II (5 x 10(-7) M) were assessed. Vasorelaxant responses to acetylcholine (10(-9) to 10 (-4) M), sodium nitroprusside (10(-9) to 10(-6) M), papaverine (10(-5) to 10(-4) M), and methoxyverapamil (D600, 1-100 microM) were determined. DHA-fed SHR had significantly reduced blood pressure (P < 0.001) and vascular wall thicknesses in the coronary, thoracic, and abdominal aorta compared with controls (P < 0.05) Contractile responses to agonists mediated by receptor stimulation and potassium depolarization were not altered in DHA-fed SHR. Endothelial-dependent relaxations to acetylcholine were not altered which suggests endothelial-derived nitric oxide production/release is not affected by dietary DHA. Other mechanisms of vascular relaxation, including intracellular cyclic nucleotides, cGMP, and cAMP were not altered by dietary DHA because aortic relaxant responses to sodium nitroprusside and papaverine were similar in control and DHA-fed SHR. No significant differences were seen in relaxant responses to the calcium channel blocker, D600, or contractile responses to norepinephrine in the absence of extracellular calcium. These results suggest that dietary DHA does not affect mechanisms related to extracellular calcium channels or intracellular calcium mobilization. Moreover, the contractile and vasorelaxant responses are not differentially altered with dietary DHA in this in vivo SHR model. The findings demonstrate that dietary DHA reduces systolic blood pressure and vascular wall thickness in SHR. This may contribute to decrease arterial stiffness and pulse pressure, in addition to the antihypertensive properties of DHA. The antihypertensive properties of DHA are not related to alterations in vascular responses.  相似文献   
992.
993.
Vascular anomalies comprise a widely heterogenous group of tumors and malformations. Great confusion has arisen because of the term hemangioma has been and is continued to be used to represent a multitude of vascular entities. This review presents the updated classification of vascular anomalies with the goal of clarifying the term hemangioma. In addition, newer clinical concepts in hemangiomas and other vascular tumors is presented. Hemangioma subtypes and hemangioma variants are also discussed, and a brief review of pyogenic granuloma and Kaposiform hemangioendothelioma is provided. Finally, the immunohistochemical marker GLUT1 is reviewed, a marker that heralds a new era in vascular anomalies research.  相似文献   
994.
995.

Background

Twenty years ago this year was the first publication describing a region of neural crest cells necessary for normal cardiovascular development. Ablation of this region in chick resulted in persistent truncus arteriosus, mispatterning of the great vessels, outflow malalignments, and hypoplasia or aplasia of the pharyngeal glands.

Methods

We begin with a historical perspective and then review the progress that has been made in the ensuing 20 years in determining the direct and indirect contributions of the neural crest cells, now termed cardiac neural crest cells, in cardiovascular and pharyngeal arch development. Many of the molecular pathways that are now known to influence the specification, migration, patterning and final targeting of the cardiac neural crest cells are also reviewed.

Results

Although much knowledge has been gained by using many genetic manipulations to understand the cardiac neural crest cells' role in cardiovascular development, most models fail to explain the phenotypes seen in syndromic and non‐syndromic human congenital heart defects, such as the DiGeorge syndrome.

Conclusions

We propose that the cardiac neural crest exists as part of a larger cardiocraniofacial morphogenetic field and describe several human syndromes that result from abnormal development of this field. Birth Defects Research (Part C) 69:2–13, 2003. © 2003 Wiley‐Liss, Inc.
  相似文献   
996.
Lou TF  Gray CW  Gray DM 《Oligonucleotides》2003,13(5):313-324
Two sets of 20-mer phosphorothioate-modified oligodeoxynucleotide DNAs (sODN) and 21-mer or 22-mer small interfering RNAs (siRNAs), targeted to the same coding sites in raf-1 mRNA, were compared for their abilities to reduce the amount of endogenously expressed Raf-1 protein in T24 cells. The amount of Raf-1 protein was monitored by careful quantitation of Western blots. We found that the siRNAs were somewhat less effective than the S-ODNs in reducing the Raf-1 protein level 20 hours after a 4-hour transfection. The siRNA duplexes were characterized by circular dichroism (CD) spectra, and melting temperatures (Tm) were obtained for the siRNA duplexes and DNA x RNA hybrids formed by the S-ODNs. The S-ODNs differed in their effectiveness, the S-ODN that formed the more stable hybrid being the more effective in reducing the Raf-1 protein level, but the two siRNAs were equally effective despite a difference in Tm of about 20 degrees C. Finally, the siRNAs and S-ODNs had a comparable nonspecific effect on a nontargeted (Bcl-2) protein. Our data add to others in the literature that show it can be difficult to select siRNAs that are more effective than antisense ODNs in downregulating endogenously expressed proteins.  相似文献   
997.
2-[(2H(9))Butoxy]acetic acid and 2-(3-methylbutoxy)acetic acid were synthesized, mixed with 2-butoxyacetic acid, and separated by capillary gas chromatography on a fused-silica column with a length of 50 m, inside diameter of 0.200 mm, and a "free fatty acid phase" wall coating of 0.3 microm film. 2-[(2H(9))Butoxy]acetic acid, 2-butoxyacetic acid, and 2-(3-methylbutoxy)acetic acid were baseline resolved at retention times of 13.55, 13.78, and 15.20 min; 2-(3-methylbutoxy)acetic acid having a peak efficiency of 360,000. Mass spectrometric detection using selected ion monitoring at m/z 66, 57, and 71 showed linear analytical responses from 0.04 ng to at least 200 ng with a limit of detection of 0.04 ng for 2-butoxyacetic acid.  相似文献   
998.
999.
The assembly of cilia and flagella depends on bidirectional intraflagellar transport (IFT). Anterograde IFT is driven by kinesin II, whereas retrograde IFT requires cytoplasmic dynein 1b (cDHC1b). Little is known about how cDHC1b interacts with its cargoes or how it is regulated. Recent work identified a novel dynein light intermediate chain (D2LIC) that colocalized with the mammalian cDHC1b homolog DHC2 in the centrosomal region of cultured cells. To see whether the LIC might play a role in IFT, we characterized the gene encoding the Chlamydomonas homolog of D2LIC and found its expression is up-regulated in response to deflagellation. We show that the LIC subunit copurifies with cDHC1b during flagellar isolation, dynein extraction, sucrose density centrifugation, and immunoprecipitation. Immunocytochemistry reveals that the LIC colocalizes with cDHC1b in the basal body region and along the length of flagella in wild-type cells. Localization of the complex is altered in a collection of retrograde IFT and length control mutants, which suggests that the affected gene products directly or indirectly regulate cDHC1b activity. The mammalian DHC2 and D2LIC also colocalize in the apical cytoplasm and axonemes of ciliated epithelia in the lung, brain, and efferent duct. These studies, together with the identification of an LIC mutation, xbx-1(ok279), which disrupts retrograde IFT in Caenorhabditis elegans, indicate that the novel LIC is a component of the cDHC1b/DHC2 retrograde IFT motor in a variety of organisms.  相似文献   
1000.
The receptor for hyaluronan-mediated motility (RHAMM), an acidic coiled coil protein, has previously been characterized as a cell surface receptor for hyaluronan, and a microtubule-associated intracellular hyaluronan binding protein. In this study, we demonstrate that a subset of cellular RHAMM localizes to the centrosome and functions in the maintenance of spindle integrity. We confirm a previous study showing that the amino terminus of RHAMM interacts with microtubules and further demonstrate that a separate carboxy-terminal domain is required for centrosomal targeting. This motif overlaps the defined hyaluronan binding domain and bears 72% identity to the dynein interaction domain of Xklp2. RHAMM antibodies coimmunprecipitate dynein IC from Xenopus and HeLa extracts. Deregulation of RHAMM expression inhibits mitotic progression and affects spindle architecture. Structure, localization, and function, along with phylogenetic analysis, suggests that RHAMM may be a new member of the TACC family. Thus, we demonstrate a novel centrosomal localization and mitotic spindle-stabilizing function for RHAMM. Moreover, we provide a potential mechanism for this function in that RHAMM may cross-link centrosomal microtubules, through a direct interaction with microtubules and an association with dynein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号