首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   226篇
  免费   19篇
  245篇
  2024年   3篇
  2023年   10篇
  2022年   23篇
  2021年   30篇
  2020年   22篇
  2019年   29篇
  2018年   25篇
  2017年   11篇
  2016年   17篇
  2015年   20篇
  2014年   8篇
  2013年   12篇
  2012年   4篇
  2011年   8篇
  2010年   2篇
  2009年   5篇
  2008年   2篇
  2007年   4篇
  2006年   2篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  1984年   2篇
  1981年   1篇
  1980年   1篇
排序方式: 共有245条查询结果,搜索用时 15 毫秒
131.
As a part of a directed program for development of new active agents, novel heterocyclic derivatives with antipyrine and pyrazolone moieties -incorporated in- have been designed and synthesized. Starting with 4-arylidene-3-methyl-1-phenyl-5-pyrazolone derivative 2a,b novel Mannich bases derivatives have been synthesized and biologically evaluated for their anti-inflammatory activity. Furthermore, the activity of such compounds has been tested interestingly as COX-1 and COX-2 inhibitors. Structure elucidation of the synthesized compounds was attained by the use of elemental analysis, IR, 1H NMR, 13C NMR, and Mass spectrometry techniques. Compounds 3b, 3d and 4b represent the high % inhibition values for both COX-1 and COX-2. On the other hand, compound 8 showed little selectivity against COX-2 while compound 10 showed good selectivity against COX-1 only. Structure activity relationship has been discussed and the results were confirmed by molecular docking calculations.  相似文献   
132.
N-methyl-d-aspartate receptors (NMDARs) are located in neuronal cell membranes at synaptic and extrasynaptic locations, where they are believed to mediate distinct physiological and pathological processes. Activation of NMDARs requires glutamate and a coagonist whose nature and impact on NMDAR physiology remain elusive. We report that synaptic and extrasynaptic NMDARs are gated by different endogenous coagonists, d-serine and glycine, respectively. The regionalized availability of the coagonists matches the preferential affinity of synaptic NMDARs for d-serine and extrasynaptic NMDARs for glycine. Furthermore, glycine and d-serine inhibit NMDAR surface trafficking in?a subunit-dependent manner, which is likely to influence NMDARs subcellular location. Taking advantage of this coagonist segregation, we demonstrate that long-term potentiation and NMDA-induced neurotoxicity rely on synaptic NMDARs only. Conversely, long-term depression requires both synaptic and extrasynaptic receptors. Our observations provide key insights into the operating mode of NMDARs, emphasizing functional distinctions between synaptic and extrasynaptic NMDARs in brain physiology.  相似文献   
133.
Herein, a series of N''-benzylidene-3,4-dimethoxybenzohydrazide derivatives were designed and synthesised to target the multidrug efflux pump (MATE). The antibacterial activities were screened against S. aureus, Acinetobacter, S. typhi, E. coli, and P. aeruginosa, whereas their antifungal activities were screened against C. albicans. Compounds 4a, 4h, and 4i showed the most promising antibacterial and antifungal activities. Moreover, compounds 4h and 4i being the broader and superior members regarding their antimicrobial effects were selected to be further evaluated via in vivo testing using biochemical analysis and liver/kidney histological examination. Additionally, molecular docking was carried out to attain further deep insights into the synthesised compounds'' binding modes. Also, ADMET studies were performed to investigate the physicochemical/pharmacokinetics features and toxicity parameters of the synthesised derivatives. Finally, a structure-antimicrobial activity relationship study was established to facilitate further structural modifications in the future.

Highlights

  • A series of new N''-benzylidene-3,4-dimethoxybenzohydrazide derivatives were designed and synthesised targeting the multidrug efflux pump (MATE) guided by the pharmacophoric features of the co-crystallized native inhibitor of the target protein.
  • The newly synthesised compounds were assessed through in vitro, in vivo, and in silico approaches.
  • Using the agar well diffusion assay, the antibacterial activities of the synthesised compounds were screened against S. aureus, Acinetobacter, S. typhi, E. coli, and P. aeruginosa, whereas, their antifungal activities were screened against C. albicans.
  • The minimal inhibitory concentration (MIC) and the minimal bactericidal concentration (MBC) of the synthesised compounds were investigated on variable microbial species.
  • Compounds (4h and 4i) -as the broader and superior members regarding their antimicrobial effects- were further evaluated via in vivo testing using bio-chemical analysis and liver/kidney histological examination.
  • A molecular docking study and ADMET in silico studies were performed.
  • A structure-antimicrobial activity relationship study was established to facilitate further structural modifications in the future.
  相似文献   
134.
Regenerative medicine is the field concerned with the repair and restoration of the integrity of damaged human tissues as well as whole organs.Since the inception of the field several decades ago,regenerative medicine therapies,namely stem cells,have received significant attention in preclinical studies and clinical trials.Apart from their known potential for differentiation into the various body cells,stem cells enhance the organ's intrinsic regenerative capacity by altering its environment,whether by exogenous injection or introducing their products that modulate endogenous stem cell function and fate for the sake of regeneration.Recently,research in cardiology has highlighted the evidence for the existence of cardiac stem and progenitor cells(CSCs/CPCs).The global burden of cardiovascular diseases’morbidity and mortality has demanded an in-depth understanding of the biology of CSCs/CPCs aiming at improving the outcome for an innovative therapeutic strategy.This review will discuss the nature of each of the CSCs/CPCs,their environment,their interplay with other cells,and their metabolism.In addition,important issues are tackled concerning the potency of CSCs/CPCs in relation to their secretome for mediating the ability to influence other cells.Moreover,the review will throw the light on the clinical trials and the preclinical studies using CSCs/CPCs and combined therapy for cardiac regeneration.Finally,the novel role of nanotechnology in cardiac regeneration will be explored.  相似文献   
135.

To enhance the multiplication rate in Musa acuminata Colla (banana; ‘Grand Nain’) organogenesis, higher amounts of thiamine along with different sugar types and concentrations were evaluated at the proliferation phase. Thiamine at 1, 10, 50, 100, and 200 mg L−1 was compared with 0.1 mg L−1 thiamine found in conventional Murashige and Skoog (MS) medium. Maximum proliferation of banana was induced with 100 mg L−1 thiamine. Additionally, 15, 30, and 45 g L−1 sucrose, glucose, fructose, and sorbitol combined with regular and optimal levels of thiamine were tested. Glucose at 30 g L−1 most improved shoot proliferation alone and enhanced shoot proliferation further, when combined with 100 mg L−1 thiamine, followed by sucrose and fructose, whereas sorbitol completely inhibited growth and caused tissue browning. All evaluated vegetative traits were significantly affected by sugar type and concentration, and thiamine levels, unlike the photosynthetic pigments. Moreover, genetic stability of the plants recovered from the enhanced protocol was confirmed by inter-simple sequence repeats (ISSR) and randomly amplified polymorphic DNA (RAPD) analysis. A total of 230 bands generated by both marker types were monomorphic for the randomly selected regenerated plants, compared with their mother plant. Thus, the proliferation medium supplemented with 30 g L−1 glucose and 100 mg L−1 thiamine could be recommended for banana organogenesis. Results herein are of great importance and helpful in enhancing the commercial in vitro propagation protocols of banana, without the need of increasing the number of subcultures, which can cause somaclonal variation.

  相似文献   
136.
The new drug linagliptin belongs to the class of dipeptidyl peptidase-4 enzyme inhibitors. Linagliptin is used to treat type 2 diabetes and is taken orally either alone or in combination with other drugs. In this instance, a new, simple, and economical technique for analyzing linagliptin was developed by the effective use of a pyrrolidone derivative. The primary amine group of linagliptin permits its condensation with ninhydrin (0.14% w/v) to produce a fluorescent product in the presence of phenylacetaldehyde (0.02% v/v). All experimental parameters were carefully examined and adjusted in order to monitor the generation of the pyrrolidone derivative at excitation and emission wavelengths of 385 and 475 nm, respectively. The calibration graph was made by plotting the intensity of the fluorescence in relation to linagliptin concentration. A significant linearity was found for values ranging from 20 to 460 ng/mL. The process's validity has been verified by a thorough assessment of the instructions provided by the International Conference on Harmonization (ICH). The results indicate excellent uniformity with a reference method, showing that there is no substantial difference in precision and accuracy. The proposed approach was utilized for determining linagliptin in real rat plasma successfully owing to its high sensitivity. Additionally, the proposed approach was evaluated using the Eco-Scale evaluation tool and showed a high degree of eco-friendliness (86/100).  相似文献   
137.
The problem of antibiotic resistance considers one of the most dangerous challenges facing the medical field. So, it is necessary to find substitutions to conventional antibiotics. Antimicrobial peptides (AMPs) are a bio-functional derivative that have been observed as one of the important solutions to such upcoming crisis. Owing to their role as the first line of defense against bacteria, fungi, and viruses. This study was conducted to induce the immune response of Spodoptera littoralis larvae by inoculation of sub lethal doses of Staphylococcus aureus and its enterotoxin. Since Staphylococcal enterotoxin A (SEA) considers the major causative agents of Staphylococcal food poisoning, our study oriented to purify and characterize this toxin to provoke its role in yielding AMPs with broad spectrum antimicrobial activity. A great fluctuation was recorded in the biochemical properties of immunized hemolymph not only in the total protein content but also protein banding pattern. Protein bands of ∼22 kDa (attacin-like) and ∼15 kDa (lysozyme-like) were found to be common between the AMPs induced as a result of both treatments. While protein bands of molecular weight ∼70 kDa (phenoloxidase-like) and ∼14 kDa (gloverin-like) were found specific for SEA treatment. Chromatographic analysis using HPLC for the induced AMPs showed different types of amino acids appeared with differences in their quantities and velocities. These peptides exhibited noticeable antimicrobial activity against certain Gram-positive and Gram-negative bacteria. In conclusion, the antimicrobial potential of the antimicrobial peptides (AMP) induced in the larval hemolymph of S. littoralis will be a promising molecule for the development of new therapeutic alternatives.  相似文献   
138.
Mercury (Hg2+) is a natural element present in foods such as fish, water and soil. Exposure to mercury leads to severe toxic effects on the nervous, digestive, and immune systems. Here, a novel, green, and environmentally friendly fluorescent probe decorated with cysteine/MnO2 quantum dots (Cys@MnO2 QDs) was synthesized. This synthesis was carried out using a simple ultrasound technique with the aid of cysteine for fabricating Cys@MnO2 QDs to estimate Hg levels in fish and water samples. In this morphological study, Cys@MnO2 QDs were fully characterized using high-resolution transmission electron microscopy, zeta potential analysis, fluorescence, ultraviolet–visible and infrared spectroscopy. The fluorescence of the synthesized Cys@MnO2 QDs was significantly quenched by gradually increasing the Hg(II) concentration. The quenching mechanism based on the Hg–S bonds strengthened the utility of the Cys@MnO2 QDs as a novel luminescent nanoprobe. The estimation of Hg was linear in the concentration range 0.7–100.0 ng mL−1 with a limit of quantitation equal to 0.30 ng mL−1. The Cys@MnO2 QDs are fluorescent probes with various benefits such as speed, ease of use, cost- effective, and being environmentally friendly; they are easily applied in food manufacturing and for public health improvement.  相似文献   
139.
A new set of 4-phenylcoumarin derivatives was designed and synthesized aiming to introduce new tubulin polymerization inhibitors as anti-breast cancer candidates. All the target compounds were evaluated for their cytotoxic effects against MCF-7 cell line, where compounds 2f, 3a, 3b, 3f, 7a and 7b, showed higher cytotoxic effect (IC50?=?4.3–21.2?μg/mL) than the reference drug doxorubicin (IC50?=?26.1?μg/mL), additionally, compounds 1 and 6b exhibited the same potency as doxorubicin (IC50?=?25.2 and 28.0?μg/mL, respectively). The thiazolidinone derivatives 3a, 3b and 3f with potent and selective anticancer effects towards MCF-7 cells (IC50?=?11.1, 16.7 and 21.2?μg/mL) were further assessed for tubulin polymerization inhibition effects which showed that the three compounds were potent tubulin polymerization suppressors with IC50 values of 9.37, 2.89 and 6.13?μM, respectively, compared to the reference drug colchicine (IC50?=?6.93?μM). The mechanistic effects on cell cycle progression and induction of apoptosis in MCF-7 cells were determined for compound 3a due to its potent and selective cytotoxic effects in addition to its promising tubulin polymerization inhibition potency. The results revealed that compound 3a induced cell cycle cessation at G2/M phase and accumulation of cells in pre-G1 phase and prevented its mitotic cycle, in addition to its activation of caspase-7 mediating apoptosis of MCF-7 cells. Molecular modeling studies for compounds 3a, 3b and 3f were carried out on tubulin crystallography, the results indicated that the compounds showed binding mode similar to the co-crystalized ligand; colchicine. Moreover, pharmacophore constructed models and docking studies revealed that thiazolidinone, acetamide and coumarin moieties are crucial for the activity. Molecular dynamics (MD) studies were carried out for the three compounds over 100?ps. MD results of compound 3a showed that it reached the stable state after 30?ps which was in agreement with the calculated potential and kinetic energy of compound 3a.  相似文献   
140.

Purpose

To detect co-infections in the culture-proven acanthamoebic keratitis (AK) cases, and to test the capability of biofilm formation in the isolated microbiota. The clinical findings, habit of wearing contact lens and in-vitro antibiotic resistance were analyzed further according to the biofilm formation capability.

Methods

After clinical examination, corneal scraps and swabs were taken from 240 clinically suspected AK cases, for Acanthamoeba and microbiological cultures. In cases of keratoplasty, trimmed corneal tissue was collected and sent for histopathological examination. Scanning electron microscopy was done for some samples. Biofilm formation capability was investigated using a tissue culture plate method. Antibiotic resistance pattern was determined using a modified-Kirby-Bauer disc diffusion method.

Results

In 102 AK culture proven cases, 11 had no co-infection, 74 had a single co-infection and 17 had double co-infections. Enterobactericae and Aspergillus were the commonest bacterial and fungal isolates, respectively. Regarding the biofilm formation, 64.7% of Enterobactericae, 50% of Pseudomonas aeuroginosa, 43.75% of Staph aureus, 76.92% of Streptococcus pneumoniae, 28.57% of Corynebacterium, 60% of α-haemolytic streptococci, 40% of Acinetobacter, 100% of Candida and 77.8% Aspergillus isolates were biofilm producers. Severe manifestations were more frequently reported in cases co-infected with biofilm producers than with non-biofilm producers. Generally, high percentages of the biofilm forming bacterial isolates were sensitive to antibiotics in-vitro.

Conclusions

Routine investigations for co-infection and biofilm formation in addition to Acanthamoeba culture are strongly recommended in suspected AK cases. Co-infection with biofilm producers may precipitate extrinsic in-vivo drug resistance despite of the in-vitro sensitivity. Designing a biofilm-dissolving topical drug is highly recommended to enhance the response to the standard therapeutic regimen especially in the resistant AK cases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号