首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3384篇
  免费   199篇
  2023年   11篇
  2022年   36篇
  2021年   60篇
  2020年   40篇
  2019年   84篇
  2018年   80篇
  2017年   64篇
  2016年   107篇
  2015年   183篇
  2014年   157篇
  2013年   234篇
  2012年   277篇
  2011年   244篇
  2010年   153篇
  2009年   117篇
  2008年   195篇
  2007年   203篇
  2006年   191篇
  2005年   177篇
  2004年   175篇
  2003年   143篇
  2002年   168篇
  2001年   28篇
  2000年   24篇
  1999年   36篇
  1998年   27篇
  1997年   20篇
  1996年   26篇
  1995年   19篇
  1994年   18篇
  1993年   17篇
  1992年   12篇
  1991年   20篇
  1990年   11篇
  1989年   12篇
  1988年   11篇
  1987年   18篇
  1985年   9篇
  1984年   16篇
  1983年   12篇
  1982年   22篇
  1981年   9篇
  1980年   8篇
  1979年   15篇
  1977年   17篇
  1976年   7篇
  1975年   7篇
  1969年   8篇
  1968年   6篇
  1967年   9篇
排序方式: 共有3583条查询结果,搜索用时 515 毫秒
951.
13C-13C NOESY experiments were performed under long mixing time conditions on reduced human superoxide dismutase (32 kDa, 15N, 13C and 70% 2H labeled). 13C-13C couplings were successfully eliminated through post-processing of in-phase-anti-phase (IPAP) data. It appears that at mixing time m of 3.0 s the spin diffusion mechanism allows the detection of 96% of the two-bond correlations involving C and C. The interpretation was confirmed by simulations. This approach broadens the range of applicability of 13C-13C NOESY spectroscopy.  相似文献   
952.
Previous studies have shown that chronic salt overload increases insulin sensitivity, while chronic salt restriction decreases it. In the present study we investigated the influence of dietary sodium on 1) GLUT4 gene expression, by No the n and Western blotting analysis; 2) in vivo GLUT4 protein translocation, by measuring the GLUT4 protein in plasma membrane and microsome, before and after insulin injection; and 3) insulin signaling, by analyzing basal and insulin-stimulated tyrosine phosphorylation of insulin receptor (IR)-beta, insulin receptor substrate (IRS)-1, and IRS-2. Wistar rats we e fed no mal-sodium (NS-0.5%), low-sodium (LS-0.06%), o high-sodium diets (HS-3.12%) fo 9 wk and were killed under pentobarbital anesthesia. Compared with NS ats, HS ats inc eased (P < 0.05) the GLUT4 protein in adipose tissue and skeletal muscle, whereas GLUT4 mRNA was increased only in adipose tissue. GLUT4 expression was unchanged in LS ats compared with NS ats. The GLUT4 translocation in HS ats was higher (P < 0.05) both in basal and insulin-stimulated conditions. On the other hand, LS ats did not increase the GLUT4 translocation after insulin stimulus. Compared with NS ats, LS ats showed reduced (P < 0.01) basal and insulin-stimulated tyrosine phosphorylation of IRS-1 in skeletal muscle and IRS-2 in live, whereas HS ats showed enhanced basal tyrosine phosphorylation of IRS-1 in skeletal muscle (P < 0.05) and of IRS-2 in live. In summary, increased insulin sensitivity in HS ats is elated to increased GLUT4 gene expression, enhanced insulin signaling, and GLUT4 translocation, whereas decreased insulin sensitivity of LS ats does not involve changes in GLUT4 gene expression but is elated to impaired insulin signaling.  相似文献   
953.
Heterodimers of rat glutathione S-transferase A1-1 were formed using one wild-type subunit and one subunit with a mutation at the interface to evaluate whether the subunits are interactive or independent. Within the subunit interface, we are considering two regions of interactions: one region consists of a "hydrophobic ball and socket" with Phe 52 from one subunit as the ball and Phe 136 from the second subunit as one of the socket residues. The second region of interaction consists of Arg 69 and Glu 97 from both subunits. The heterodimers were formed after incubation in 1,6-hexanediol. Because one subunit in each pair had a His-tag, the heterodimers were purified using a nickel-nitrilotriacetic acid column. The specific activities of the heterodimer were compared with those of the two homodimers to determine whether the less active, mutant subunit communicates with the other subunit. Two of the heterodimers, wild type/R69E-His and wild type/E97Q-His, displayed specific activities much lower than that expected for independent active sites; in these cases, there are new close repulsive interactions and the low activity of one subunit is communicated to the neighboring subunit. In contrast, the other two heterodimers, wild type/R69Q-His and F136A/wild type-His, exhibited specific activities similar to those expected for independent active sites; in these heterodimers, the closest interaction is not repulsive or occurs over a much longer distance and the subunits act independently. We conclude that whether the subunits interact or are independent depends on the nature of the interactions at the subunit interface.  相似文献   
954.
Biomphalaria tenagophila population from Taim (state of Rio Grande do Sul, Brazil) is totally resistant to Schistosoma mansoni, and presents a molecular marker of 350 bp by polymerase chain reaction and restriction fragment length polymorphism of the entire rDNA internal transcriber spacer. The scope of this work was to determine the heritage pattern of this marker. A series of cross-breedings between B. tenagophila from Taim (resistant) and B. tenagophila from Joinville, state of Santa Catarina (susceptible) was carried out, and their descendants F1 and F2 were submitted to this technique. It was possible to demonstrate that the specific fragment from Taim is endowed with dominant character, since the obtained segregation was typically mendelian.  相似文献   
955.
The family of haem oxygenase enzymes is unique in nature for its role in haem degradation. Haem is cleaved at the alpha-meso position by haem oxygenase with the support of electrons donated by cytochrome P450 reductase, the first products of this reaction being CO, iron and biliverdin. Biliverdin is then converted to bilirubin by biliverdin reductase. If haem is viewed as a substrate for an anabolic pathway, it becomes evident that haem oxygenases do not break down haem for elimination from the body, but rather use haem to generate crucial molecules that can modulate cellular functions. The facts that biliverdin and bilirubin are potent antioxidants and that CO is both a vasoactive and signalling molecule sustain this idea. The existence of a constitutive haem oxygenase (HO-2), mainly present in the vasculature and nervous system, and an inducible haem oxygenase (HO-1), which is highly expressed during stress conditions in all tissues, also suggests that cells have evolved a fine control of this enzymic pathway to ultimately regulate haem consumption and to ensure production of CO, biliverdin/bilirubin and iron during physiological and pathophysiological situations. This review will focus primarily on the biological actions of biliverdin and bilirubin derived from the haem oxygenase/biliverdin reductase systems and their potential roles in counteracting oxidative and nitrosative stress.  相似文献   
956.
Degradation of aromatic hydrocarbons by aerobic bacteria is generally divided into an upper pathway, which produces dihydroxylated aromatic intermediates by the action of monooxygenases, and a lower pathway, which processes these intermediates down to molecules that enter the citric acid cycle. Bacterial multicomponent monooxygenases (BMMs) are a family of enzymes divided into six distinct groups. Most bacterial genomes code for only one BMM, but a few cases (3 out of 31) of genomes coding for more than a single monooxygenase have been found. One such case is the genome of Pseudomonas stutzeri OX1, in which two different monooxygenases have been found, phenol hydroxylase (PH) and toluene/o-xylene monooxygenase (ToMO). We have already demonstrated that ToMO is an oligomeric protein whose subunits transfer electrons from NADH to oxygen, which is eventually incorporated into the aromatic substrate. However, no molecular data are available on the structure and on the mechanism of action of PH. To understand the metabolic significance of the association of two similar enzymatic activities in the same microorganism, we expressed and characterized this novel phenol hydroxylase. Our data indicate that the PH P component of PH transfers electrons from NADH to a subcomplex endowed with hydroxylase activity. Moreover, a regulatory function can be suggested for subunit PH M. Data on the specificity and the kinetic constants of ToMO and PH strongly support the hypothesis that coupling between the two enzymatic systems optimizes the use of nonhydroxylated aromatic molecules by the draining effect of PH on the product(s) of oxidation catalyzed by ToMO, thus avoiding phenol accumulation.  相似文献   
957.
Anchoring protein alphaKAP targets calmodulin kinase II (CaMKII) to the sarcoplasmic reticulum (SR), and in the rabbit is a substrate of CaMKII itself in fast-twitch, but not in slow-twitch muscle. This work was aimed at elucidating the molecular basis for differential phosphorylation of alphaKAP. Here we show that two, immunologically related, size forms (23 and 21 kDa) of alphaKAP are present in fast-twitch muscle SR in a 3:1 stoichiometry. Phosphorylation experiments identified the shorter form as the CaMKII specific substrate. Both forms are shown to be stably integrated into the holoenzyme. Two splice variants of alphaKAP were found in rabbit fast-twitch muscle and only one in slow-twitch muscle, using RT-PCR. Mobilities on SDS-PAGE are those expected. The shorter splice variants lacks the 33-nucleotide sequence inserted by alternative splicing present in full-length alphaKAP, akin to differences between variants A and B of brain alphaCaMKII. The absence of the 11-amino acid sequence creates a novel CaMKII phosphorylation site. Taken together our results show that alternative splicing regulates alphaKAP phosphorylation in a fiber-type specific manner.  相似文献   
958.
Gene expression in human cells with mutant insulin receptors   总被引:3,自引:0,他引:3  
Insulin initiates its action by interacting with specific receptors on the plasma membrane of target cells. Mutations in these receptors cause the inherited insulin-resistant syndrome leprechaunism. Affected patients have severe intrauterine and post-natal growth restriction coupled with severe metabolic abnormalities. Fibroblasts from patients with leprechaunism have impaired in vitro growth, reflecting the growth restriction seen it in vivo. To determine the reason for the defective growth of cells from patients with mutant insulin receptors, gene expression was compared among fibroblasts from controls and patients with leprechaunism using DNA microarrays. Of the 12,626 human genes tested, cells from patients with leprechaunism had consistently increased mRNA for 151 genes and decreased mRNA for 51 genes. The level of expression of selected genes was independently confirmed by real time RT-PCR. Leprechaun cells had increased expression of several genes involved in metabolic functions, several of which were not previously known to be regulated by the insulin receptor. The absence of insulin receptors modified the expression of genes controlling apoptosis and cellular growth. Functional analysis indicated that cells from patients with leprechaunism had a normal response to apoptotic stimuli when mitochondrial potential and caspase activity were assayed. About 20% of the genes whose RNA was decreased in leprechaun cells coded for proteins involved in cell growth and differentiation. These results suggest that the insulin receptor is a physiologic regulator of several genes involved in intermediate metabolism even in human fibroblasts. Decreased expression of growth-promoting genes may explain the growth restriction of patients with severe insulin resistance.  相似文献   
959.
Palenchar JB  Colman RF 《Biochemistry》2003,42(7):1831-1841
Adenylosuccinate lyase, an enzyme catalyzing two reactions in purine biosynthesis (the cleavage of either adenylosuccinate or succinylaminoimidazole carboxamide ribotide), has been implicated in a human disease arising from point mutations in the gene encoding the enzyme. Asn(276) of Bacillus subtilis adenylosuccinate lyase, a residue corresponding to the location of a human enzyme mutation, was replaced by Cys, Ser, Ala, Arg, and Glu. The mutant enzymes exhibit decreased V(max) values (2-400-fold lower) for both substrates compared to the wild-type enzyme and some changes in the pH dependence of V(max) but no loss in affinity for adenylosuccinate. Circular dichroism reveals no difference in secondary structure between the wild-type and mutant enzymes. We show here for the first time that wild-type adenylosuccinate lyase exhibits a protein concentration dependence of molecular weight, secondary structure, and specific activity. An equilibrium constant between the dimer and tetramer was measured by light scattering for the wild-type and mutant enzymes. The equilibrium is somewhat shifted toward the tetramer in the mutant enzymes. The major difference between the wild-type and mutant enzymes appears to be in quaternary structure, with many mutant enzymes exhibiting marked thermal instability relative to the wild-type enzyme. We propose that mutations at position 276 result in structurally impaired adenylosuccinate lyases which are assembled into defective tetramers.  相似文献   
960.
Schulte RJ  Sefton BM 《Biochemistry》2003,42(31):9424-9430
The Wiscott-Aldrich syndrome protein, WASP, is an effector through which cdc42, a Rho family GTPase, regulates the actin cytoskeleton in hematopoietic cells. We have found that WASP binds readily to a number of tyrosine protein kinases including the Src kinases and the Abl kinase when the proteins are coexpressed during transient transfection. Binding inhibited the activity of each of these kinases strikingly, both in vitro and in vivo. Surprisingly, the binding was not due to an interaction between the proline-rich domain of WASP and the SH3 domain of these kinases. Rather, residues 83-93 in WASP were found to bind to the catalytic domains of the kinases. Binding did not decrease the affinity of Src kinases for either ATP or a peptide substrate noticeably. Rather, the V(max) of substrate phosphorylation was reduced by the binding of the peptide. This inhibition represents a novel form of regulation of protein kinase activity and suggests that that the isolation of small molecules that exploit this inhibitory mechanism may be possible.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号