首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3557篇
  免费   228篇
  3785篇
  2024年   4篇
  2023年   29篇
  2022年   50篇
  2021年   98篇
  2020年   63篇
  2019年   82篇
  2018年   107篇
  2017年   100篇
  2016年   138篇
  2015年   230篇
  2014年   223篇
  2013年   285篇
  2012年   343篇
  2011年   328篇
  2010年   206篇
  2009年   174篇
  2008年   217篇
  2007年   193篇
  2006年   169篇
  2005年   150篇
  2004年   135篇
  2003年   102篇
  2002年   78篇
  2001年   18篇
  2000年   21篇
  1999年   26篇
  1998年   24篇
  1997年   17篇
  1996年   12篇
  1994年   14篇
  1993年   13篇
  1992年   12篇
  1991年   6篇
  1990年   6篇
  1989年   7篇
  1988年   5篇
  1987年   11篇
  1986年   4篇
  1985年   9篇
  1984年   10篇
  1983年   4篇
  1982年   3篇
  1979年   8篇
  1978年   3篇
  1977年   9篇
  1975年   3篇
  1973年   3篇
  1969年   7篇
  1968年   4篇
  1967年   6篇
排序方式: 共有3785条查询结果,搜索用时 15 毫秒
61.
Activation of the receptor tyrosine kinase c-kit by the kit-ligand, also known as stem cell factor (SCF), is essential to melanocyte and germ cell development and during the early stages of hematopoiesis. Deregulated expression of c-kit has been reported in malignancies affecting these lineages, i.e., myeloid leukemias, melanomas, and germ cell tumors. In addition, c-kit and SCF are coexpressed in some breast and colorectal cancer (CRC) cells, raising the question of whether c-kit serves an autocrine role in normal or malignant epithelial tissues. In this study, we demonstrate that human colorectal carcinomas, but not normal colorectal mucosa cells, coexpress SCF and c-kit in situ. Expression of c-kit was also observed in mucosa adjacent to colorectal tumor tissue. Consistent with a growth-regulatory role of SCF in CRC cells, exogenous SCF stimulated anchorage-dependent and anchorage-independent growth in four out of five CRC cell lines. Exogenous transforming growth factor (TGF)-β1 added at nanomolar concentrations to HT-29 CRC cells, which express the type I, II, and III TGF-β receptors, downregulated c-kit expression to background levels and inhibited c-kit–dependent proliferation. Similarly, TGF-β1 inhibited SCF-dependent proliferation of three first-passage CRC cell lines. In summary, expression of the potential autocrine SCF/c-kit axis is a tumor-associated phenomenon in colorectal cancer that can be suppressed by TGF-β1 in TGF-β–responsive CRC cells. J. Cell. Physiol. 172:1–11, 1997. © 1997 Wiley-Liss, Inc.  相似文献   
62.
Two different prime-boost immunization protocols were tested in rabbits and their immune response was evaluated and compared with the final aim of defining a vaccine strategy that might be able to protect non-human primates from infection with the pathogenic simian/human immunodeficiency virus, SHIV(89.6P). The two regimens were based on three priming immunizations with either an expression plasmid plus a fowlpox (FP) recombinant vector or with two FP recombinant vectors, each one expressing either the SIV(mac239) gag/pol or the HIV-1env(89.6P) genes. In both protocols, priming immunizations were followed by two boosts with SHIV-mimicking virus-like particles (VLP). A complete SHIV-specific response was observed in all animals. Interestingly, the DNA vaccine was three to 10 times more efficient than the FP recombinant in inducing an anti-gag humoral response. Real-time PCR confirmed the memory effect on T-cell subsets secreting interleukin-4 and interferon-gamma, as a consequence of stimulation of both arms of the immune system. Although both protocols were almost equally effective in eliciting homologous neutralizing antibodies and highlighted the efficacy of VLP administration for boosting, protocol A seemed to be more effective in promoting a balanced T-cell memory immune response and appears more promising for vaccine purposes.  相似文献   
63.

Background

Trace elements have been hypothesised to be involved in the pathogenesis of Multiple Sclerosis and volcanic degassing is the major natural sources of trace elements. Both incidence of Multiple Sclerosis in Catania and volcanic activity of Mount Etna have been significantly increased during the last 30 years. Due to prevailing trade winds direction, volcanic gases from Etna summit craters are mostly blown towards the eastern and southern sectors of the volcano.

Objective

To evaluate the possible association between Multiple Sclerosis and exposure to volcanogenic trace elements.

Methods

We evaluated prevalence and incidence of Multiple Sclerosis in four communities (47,234 inhabitants) located in the eastern flank and in two communities (52,210 inhabitants) located in the western flank of Mount Etna, respectively the most and least exposed area to crater gas emissions.

Results

A higher prevalence was found in the population of the eastern flank compared to the population of the western one (137.6/100,000 versus 94.3/100,000; p-value 0.04). We found a borderline significantly higher incidence risk during the incidence study period (1980–2009) in the population of the eastern flank 4.6/100,000 (95% CI 3.1–5.9), compared with the western population 3.2/100,000 (95% CI 2.4–4.2) with a RR of 1.41 (95% CI 0.97–2.05; p-value 0.06). Incidence risks have increased over the time in both populations reaching a peak of 6.4/100,000 in the eastern flank and of 4.4/100.000 in the western flank during 2000–2009.

Conclusion

We found a higher prevalence and incidence of Multiple Sclerosis among populations living in the eastern flank of Mount Etna. According to our data a possible role of TE cannot be ruled out as possible co-factor in the MS pathogenesis. However larger epidemiological study are needed to confirm this hypothesis.  相似文献   
64.
65.
66.
67.
Engagement of the T-cell receptor (TCR) in human primary T cells activates a cyclic AMP (cAMP)-protein kinase A (PKA)-Csk inhibitory pathway that prevents full T-cell activation in the absence of a coreceptor stimulus. Here, we demonstrate that stimulation of CD28 leads to recruitment to lipid rafts of a β-arrestin/phosphodiesterase 4 (PDE4) complex that serves to degrade cAMP locally. Redistribution of the complex from the cytosol depends on Lck and phosphatidylinositol 3-kinase (PI3K) activity. Protein kinase B (PKB) interacts directly with β-arrestin to form part of the supramolecular complex together with sequestered PDE4. Translocation is mediated by the PKB plextrin homology (PH) domain, thus revealing a new role for PKB as an adaptor coupling PI3K and cAMP signaling. Functionally, PI3K activation and phosphatidylinositol-(3,4,5)-triphosphate (PIP3) production, leading to recruitment of the supramolecular PKB/β-arrestin/PDE4 complex to the membrane via the PKB PH domain, results in degradation of the TCR-induced cAMP pool located in lipid rafts, thereby allowing full T-cell activation to proceed.T-cell receptor (TCR) stimulation alone is insufficient for activation of T cells, and sustainable T-cell immune responses require a second signal in addition to the TCR-mediated signal. The second signal is typically elicited by ligands B7-1 or B7-2 on antigen-presenting cells engaging the coreceptor CD28 to prevent anergy and apoptosis and enhancing interleukin-2 (IL-2) production and clonal expansion (4). Although CD28 plays a central role in T-cell activation in vivo (5), relatively little is known about the molecular basis for the increased efficacy of T-cell activation upon TCR and CD28 costimulation. Involvement of Lck, Itk, phosphatidylinositol 3-kinase (PI3K), SLP-76, Vav-1, and phospholipase C-γ (PLC-γ) has, however, been reported (43). CD28-mediated signals are transmitted via a short intracellular stretch in the receptor containing a conserved YMNM motif (32). Phosphorylation of Tyr173 in this motif by Lck and Fyn following CD28 ligation is key to efficient signal transduction (41), generating a binding site for the SH2 domain of the p85 regulatory subunit of PI3K (37, 40). CD28 may also contribute to TCR-dependent PI3K activity without recruiting PI3K directly (18). Whether engagement of CD28 alone can also induce PI3K activity has been a matter of controversy. However, recent reports confirming phosphorylation of the protein kinase B (PKB) substrate glycogen synthase kinase 3 (GSK3) upon CD28 ligation has demonstrated that this is indeed the case (6, 15). In addition, CD28 can recruit growth factor receptor-bound protein 2 (Grb2), and such association of Grb2 occurs via the phosphorylated YMNM motif as well as via the C-terminal PXXP motif (22, 35). The PXXP motif also binds and regulates Src family kinases (SFKs) (21, 47), and knock-in mice mutated in this motif were recently reported to have impaired IL-2 secretion (16).Ligation of the TCR induces cyclic AMP (cAMP) production (27). However, the significance of this observation is still not fully understood, as it is well established that cAMP potently inhibits T-cell function and proliferation (2, 45, 46, 50). The spatiotemporal dynamics of the activation-induced cAMP gradient also are not completely appreciated. We have previously shown that cAMP is rapidly produced in lipid rafts following engagement of the TCR in primary T cells (3). This activates a pool of PKA type I targeted to rafts by association with the anchoring protein Ezrin, forming part of a supramolecular complex where Ezrin, EBP50, and PAG provide a scaffold that is able to coordinate PKA phosphorylation and activation of Csk, thereby inhibiting T-cell activation (44, 50). In addition, we have demonstrated that CD3/CD28 costimulation leads to recruitment of type 4 phosphodiesterase (PDE4) isoforms to rafts, resulting in degradation of the TCR-induced cAMP pool (3). Thus, we envisage that TCR-induced cAMP production constitutes a negative feedback loop capable of abrogating T-cell activation in the absence of a second signal. In order then to allow full T-cell activation to proceed, cAMP-mediated inhibition must be lifted. This appears to occur in the presence of a costimulus involving CD28 acting to trigger recruitment of PDE4 to lipid rafts, thereby degrading cAMP at this spatially critical location and resulting in an overriding positive feed-forward signal rather than the negative feedback loop activated from the TCR. In addition, a recent publication by Conche et al. has also found a possible stimulatory effect of cAMP, as the paper surprisingly showed that a transient cAMP increase shortly after TCR triggering may potentiate the calcium component of the TCR signaling. This could constitute a positive feed-forward in addition to the negative feedback signal by cAMP (12).Spatial organization and recruitment of mediators of specific pathways as outlined above are essential to ensure signaling specificity and amplification. Among the many protein scaffolds linking effector molecules into linear pathways, β-arrestins have been reported to confer cross talk with a growing list of molecules important in cellular trafficking and signal transduction, including Src family members and mitogen-activated protein (MAP) kinases (reviewed in reference 14). The arrestins were first identified as having a role in desensitization of G protein-coupled receptors (GPCRs) (9); later, they were discovered to be involved in receptor internalization by interacting with clathrin and AP-2, thereby bringing activated receptors to clathrin-coated pits for endocytosis (19, 26). A role for β-arrestin in the spatially localized degradation of cAMP by scaffolding PDE4 isoforms to the proximity of cAMP generation at the plasma membrane has also been suggested (3, 7, 30, 38).In the present study, we uncover a novel pathway that defines how T-cell costimulation elicits recruitment of PDE4 to lipid rafts to overcome cAMP-mediated inhibition of T-cell activation. This pathway is initiated by CD28 engagement leading to PI3K activation and phosphatidylinositol-(3,4,5)-triphosphate (PIP3) production and resulting in recruitment of a supramolecular complex of PKB/β-arrestin/PDE4 targeted to the plasma membrane due to sequestration via the PKB plextrin homology (PH) domain. Functionally, this pathway is essential for CD28 costimulation to strengthen and sustain T-cell immune responses.  相似文献   
68.
Pea (Pisum sativum) stem mitochondria, energized by NADH, succinate or malate plus glutamate, underwent a spontaneous low-amplitude permeability transition (PT), which could be monitored by dissipation of the electrical potential (deltapsi) or swelling. The occurrence of the latter effects was dependent on O2 availability, because O2 shortage anticipated the manifestation of both deltapsi dissipation and swelling. Spontaneous deltapsi collapse was also monitored in sucrose-resuspended mitochondria and again O2 deprivation caused an anticipation of the phenomenon. However, in this case deltapsi dissipation was not accompanied by a parallel mitochondrial swelling. The latter effect was, indeed, evident only if mitochondria were resuspended in KCl (as osmoticum), or other cations with a molecular mass up to 100 Da (choline+). PT was also induced by protonophores (carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) or free fatty acids) or valinomycin (only in KCl). The FCCP-induced dissipation of deltapsi and swelling were inhibited by ATP and stimulated (anticipated) by cyclosporin A or O2 shortage. The FCCP-induced PT was accompanied by the release of pyridine nucleotides from the matrix and of cytochrome c from the intermembrane space of KCl-resuspended mitochondria. The spontaneous and FCCP-induced low-amplitude PT of plant mitochondria are interpreted as due to the activity of a recently identified K(ATP)+ channel whose open/closed state is dependent on polarization of the inner membrane and on the oxidoreductive state of some sulfhydryl groups.  相似文献   
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号