首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3675篇
  免费   278篇
  国内免费   1篇
  3954篇
  2024年   4篇
  2023年   25篇
  2022年   66篇
  2021年   115篇
  2020年   64篇
  2019年   85篇
  2018年   88篇
  2017年   79篇
  2016年   153篇
  2015年   209篇
  2014年   218篇
  2013年   310篇
  2012年   308篇
  2011年   309篇
  2010年   187篇
  2009年   146篇
  2008年   241篇
  2007年   231篇
  2006年   239篇
  2005年   176篇
  2004年   169篇
  2003年   132篇
  2002年   110篇
  2001年   32篇
  2000年   26篇
  1999年   25篇
  1998年   26篇
  1997年   22篇
  1996年   15篇
  1995年   19篇
  1994年   18篇
  1993年   16篇
  1992年   8篇
  1991年   19篇
  1990年   12篇
  1989年   9篇
  1988年   10篇
  1987年   2篇
  1986年   2篇
  1985年   4篇
  1983年   2篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1975年   2篇
  1973年   3篇
  1968年   1篇
  1965年   1篇
  1910年   2篇
排序方式: 共有3954条查询结果,搜索用时 15 毫秒
991.
992.
During follicle growth swine granulosa cells are physiologically exposed to a progressive oxygen shortage. It has already been shown that hypoxia stimulates angiogenesis through an increase of VEGF production, however, despite considerable progress in the understanding of the final events induced by cellular hypoxia, the signal transduction pathway remains elusive. Recent evidence suggest a role for Reactive Oxygen Species (ROS) as hypoxia signal transducer. Granulosa cells were isolated from pig follicles (> 5 mm) and cultured for 18 h in normoxic (19% O2), hypoxic (5% O2) or anoxic (1% O2) conditions. Following the incubation ROS (O2- and H2O2) production and the activity of scavenging enzymes (SOD, catalase and peroxidase) were determined. It was apparent from our data that ROS generation was reduced by hypoxia. On the contrary, SOD and peroxidase, but not catalase, increased their activity. Further studies are needed to verify whether ROS are involved in signalling hypoxia.  相似文献   
993.
Blood glucose supplies energy to cells and is critical for the human brain. Glycation of collagen, the nonenzymatic formation of glucose‐bridges, relates to diseases of aging populations and diabetics. This chemical reaction, together with its biomechanical effects, has been well studied employing animal models. However, the direct impact of glycation on collagen nano‐structure is largely overlooked, and there is a lack of ex vivo model systems. Here, we present the impact of glucose on collagen nanostructure in a model system based on abundantly available connective tissue of farm animals. By combining ex vivo small and wide‐angle X‐ray scattering (SAXS/WAXS) imaging, we characterize intra‐ and inter‐molecular parameters of collagen in decellularized bovine pericardium with picometer precision. We observe three distinct regimes according to glucose concentration. Such a study opens new avenues for inspecting the effects of diabetes mellitus on connective tissues and the influence of therapies on the resulting secondary disorders.   相似文献   
994.
The International Journal of Life Cycle Assessment - The restoration of cultural heritage, like in other production sectors, requires an innovative approach to integrate the principles of...  相似文献   
995.
Bioprocess and Biosystems Engineering - Modeling microalgal mixotrophy is challenging, as the regulation of algal metabolism is affected by many environmental factors. A reliable tool to simulate...  相似文献   
996.
BACKGROUND: Although several potential risk factors have been discussed, risk factors associated with bacterial colonization or even infection of catheters used for regional anaesthesia are not very well investigated. METHODS: In this prospective observational trial, 198 catheters at several anatomical sites where placed using a standardized technique. The site of insertion was then monitored daily for signs of infection (secretion at the insertion site, redness, swelling, or local pain). The catheters were removed when clinically indicated (no or moderate postoperative pain) or when signs of potential infection occurred. After sterile removal they were prospectively analyzed for colonization, defined as > 15 colony forming units. RESULTS: 33 (16.7%) of all catheters were colonized, and 18 (9.1%) of these with additional signs of local inflammation. Two of these patients required antibiotic treatment due to superficial infections. Stepwise logistic regression analysis was used to identify factors associated with catheter colonization. Out of 26 potential factors, three came out as statistically significant. Catheter placement in the groin (odds-ratio and 95%-confidence interval: 3.4; 1.5-7.8), and repeated changing of the catheter dressing (odds-ratio: 2.1; 1.4-3.3 per removal) increased the risk for colonization, whereas systemic antibiotics administered postoperatively decreased it (odds ratio: 0.41; 0.12-1.0). CONCLUSION: Colonization of peripheral and epidural nerve catheter can only in part be predicted at the time of catheter insertion since two out of three relevant variables that significantly influence the risk can only be recorded postoperatively. Catheter localisation in the groin, removal of the dressing and omission of postoperative antibiotics were associated with, but were not necessarily causal for bacterial colonization. These factors might help to identify patients who are at increased risk for catheter colonization.  相似文献   
997.
Real-time PCR in nuclear ribosomal DNA (nrDNA) is becoming a well-established tool for the quantification of arbuscular mycorrhizal (AM) fungi, but this genomic region does not allow the specific amplification of closely related genotypes. The large subunit of mitochondrial DNA (mtDNA) has a higher-resolution power, but mtDNA-based quantification has not been previously explored in AM fungi. We applied real-time PCR assays targeting the large subunit of mtDNA to monitor the DNA dynamics of two isolates of Glomus intraradices sensu lato coexisting in the roots of medic (Medicago sativa). The mtDNA-based quantification was compared to quantification in nrDNA. The ratio of copy numbers determined by the nrDNA- and mtDNA-based assays consistently differed between the two isolates. Within an isolate, copy numbers of the nuclear and the mitochondrial genes were closely correlated. The two quantification approaches revealed similar trends in the dynamics of both isolates, depending on whether they were inoculated alone or together. After 12 weeks of cultivation, competition between the two isolates was observed as a decrease in the mtDNA copy numbers of one of them. The coexistence of two closely related isolates, which cannot be discriminated by nrDNA-based assays, was thus identified as a factor influencing the dynamics of AM fungal DNA in roots. Taken together, the results of this study show that real-time PCR assays targeted to the large subunit of mtDNA may become useful tools for the study of coexisting AM fungi.  相似文献   
998.
The pseudorabies virus (PrV) proteins UL11, glycoprotein E (gE), and gM are involved in secondary envelopment of tegumented nucleocapsids in the cytoplasm. To assess the relative contributions of these proteins to the envelopment process, virus mutants with deletions of either UL11, gM, or gE as well as two newly constructed mutant viruses with simultaneous deletions of UL11 and gE or of UL11 and gM were analyzed in cell culture for their growth phenotype. We show here that simultaneous deletion of UL11 and gE reduced plaque size in an additive manner over the reduction observed by deletion of only UL11 or gE. However, one-step growth was not further impaired beyond the level of the UL11 deletion mutant. Moreover, in electron microscopic analyses PrV-DeltaUL11/gE exhibited a phenotype similar to that of the UL11 mutant virus. In contrast, plaque formation was virtually abolished by the simultaneous absence of UL11 and gM, and one-step growth was significantly reduced. Electron microscopy showed the presence of huge intracytoplasmic inclusions in PrV-DeltaUL11/gM-infected cells, with a size reaching 3 micro m and containing nucleocapsids embedded in tegument. We hypothesize that UL11 and gM are involved in different steps during secondary envelopment and that simultaneous deletion of both interrupts both processes, resulting in the observed drastic impairment of secondary envelopment.  相似文献   
999.
The abundance, identities, and degradation abilities of indigenous polychlorinated biphenyl (PCB)-degrading bacteria associated with five species of mature trees growing naturally in a contaminated site were investigated to identify plants that enhance the microbial PCB degradation potential in soil. Culturable PCB degraders were associated with every plant species examined in both the rhizosphere and root zone, which was defined as the bulk soil in which the plant was rooted. Significantly higher numbers of PCB degraders (2.7- to 56.7-fold-higher means) were detected in the root zones of Austrian pine (Pinus nigra) and goat willow (Salix caprea) than in the root zones of other plants or non-root-containing soil in certain seasons and at certain soil depths. The majority of culturable PCB degraders throughout the site and the majority of culturable PCB degraders associated with plants were identified as members of the genus Rhodococcus by 16S rRNA gene sequence analysis. Other taxa of PCB-degrading bacteria included members of the genera Luteibacter and Williamsia, which have not previously been shown to include PCB degraders. PCB degradation assays revealed that some isolates from the site have broad congener specificities; these isolates included one Rhodococcus strain that exhibited degradation abilities similar to those of Burkholderia xenovorans LB400. Isolates with broad congener specificity were widespread at the site, including in the biostimulated root zone of willow. The apparent association of certain plant species with increased abundance of indigenous PCB degraders, including organisms with outstanding degradation abilities, throughout the root zone supports the notion that biostimulation through rhizoremediation is a promising strategy for enhancing PCB degradation in situ.  相似文献   
1000.
Regulation of iron homeostasis and the inflammatory response are tightly linked to protect the host from infection. Here we investigate how imbalanced systemic iron homeostasis in a murine disease model of hereditary hemochromatosis (Hfe(-/-) mice) affects the inflammatory responses of the lung. We induced acute pulmonary inflammation in Hfe(-/-) and wild-type mice by intratracheal instillation of 20 μg of lipopolysaccharide (LPS) and analyzed local and systemic inflammatory responses and iron-related parameters. We show that in Hfe(-/-) mice neutrophil recruitment to the bronchoalveolar space is attenuated compared to wild-type mice although circulating neutrophil numbers in the bloodstream were elevated to similar levels in Hfe(-/-) and wild-type mice. The underlying molecular mechanisms are likely multifactorial and include elevated systemic iron levels, alveolar macrophage iron deficiency and/or hitherto unexplored functions of Hfe in resident pulmonary cell types. As a consequence, pulmonary cytokine expression is out of balance and neutrophils fail to be recruited efficiently to the bronchoalveolar compartment, a process required to protect the host from infections. In conclusion, our findings suggest a novel role for Hfe and/or imbalanced iron homeostasis in the regulation of the inflammatory response in the lung and hereditary hemochromatosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号