首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30698篇
  免费   15996篇
  国内免费   3篇
  46697篇
  2023年   41篇
  2022年   169篇
  2021年   525篇
  2020年   2250篇
  2019年   3805篇
  2018年   3919篇
  2017年   4176篇
  2016年   4248篇
  2015年   4244篇
  2014年   3899篇
  2013年   4397篇
  2012年   2104篇
  2011年   1814篇
  2010年   3244篇
  2009年   1942篇
  2008年   986篇
  2007年   565篇
  2006年   551篇
  2005年   526篇
  2004年   493篇
  2003年   456篇
  2002年   403篇
  2001年   348篇
  2000年   292篇
  1999年   219篇
  1998年   58篇
  1997年   46篇
  1996年   35篇
  1995年   43篇
  1994年   45篇
  1993年   38篇
  1992年   71篇
  1991年   53篇
  1990年   46篇
  1989年   45篇
  1988年   47篇
  1987年   35篇
  1986年   36篇
  1985年   37篇
  1984年   19篇
  1983年   30篇
  1981年   19篇
  1980年   26篇
  1979年   33篇
  1978年   19篇
  1976年   18篇
  1975年   19篇
  1974年   33篇
  1969年   16篇
  1968年   18篇
排序方式: 共有10000条查询结果,搜索用时 11 毫秒
141.
142.
Nutrition of the world's population in the 21st century often appears as an unsolved problem. The challenges are bigger than an increase in agricultural production. From a brief review on the history of food production diverse aspects of the development become evident: innovations with their beneficial and non‐beneficial aspects, e.g. the, green revolution' increasing the rice yields on one hand and the number of landless people on the other. Great differences can be found in agricultural productivity: the yields of the presently area under the plough can be increased. Climate change impacts on the framework of agricultural production with losses and gains of arable land. The challenges of global nutrition cannot be met by innovations in plant breeding and cultivation alone. Socioeconomic factors, education, and health become increasingly important.  相似文献   
143.
In search of novel mechanisms leading to the development of antiestrogen-resistance in human breast tumors, we analyzed differences in the gene and protein expression pattern of the human breast carcinoma cell line T47D and its derivative T47D-r, which is resistant toward the pure antiestrogen ZM 182780 (Faslodex trade mark, fulvestrant). Affymetrix DNA chip hybridizations on the commercially available HuGeneFL and Hu95A arrays were carried out in parallel to the proteomics analysis where the total cellular protein content of T47D or T47D-r was separated on two-dimensional gels. Thirty-eight proteins were found to be reproducibly up- or down-regulated more than 2-fold in T47D-r versus T47D in the proteomics analysis. Comparison with differential mRNA analysis revealed that 19 of these were up- or down-regulated in parallel with the corresponding mRNA molecules, among which are the protease cathepsin D, the GTPases Rab11a and MxA, and the secreted protein hAG-2. For 11 proteins, the corresponding mRNA was not found to be differentially expressed, and for eight proteins an inverse regulation was found at the mRNA level. In summary, mRNA expression data, when combined with proteomic information, provide a more detailed picture of how breast cancer cells are altered in their antiestrogen-resistant compared with the antiestrogen-sensitive state.  相似文献   
144.
Biotic interaction studies have revealed a large discrepancy among experiments in target responses to the effects of neighbours, which may in part be due to both high species‐specificity of plant responses and low number of target species used in experiments. Our aim was to assess facilitative responses at the community level and the role of both functional groups and ecological attributes of target species. In a sub‐alpine grassland on the eastern Tibet plateau, we assessed growth responses of all species in the community to removal of a dominant shrub. We also measured changes in the main environmental variables. Species responses were analysed by functional group and in relation to their mean regional altitudinal distribution. All significant interactions were positive and affected one‐third of the total species richness of the community. All functional groups were facilitated but forbs were less strongly facilitated than in the two other groups. High‐alpine species were less strongly facilitated than low‐sub‐alpine species, but the strength of this relationship was weaker than that reported in previous work. There was evidence of a decrease in extreme temperatures below the canopy of the shrub but no variations in soil moisture. We conclude that the highly stressful conditions induced by the dry continental climate of the eastern Tibet plateau are a main driver of the exclusive dominance of positive interactions. Assessing interactive responses at the community level is likely to provide a useful tool to better understand the role of biotic interactions in community responses to environmental changes.  相似文献   
145.
The role of coastal mangrove wetlands in sequestering atmospheric carbon dioxide (CO2) and mitigating climate change has received increasing attention in recent years. While recent studies have shown that methane (CH4) emissions can potentially offset the carbon burial rates in low‐salinity coastal wetlands, there is hitherto a paucity of direct and year‐round measurements of ecosystem‐scale CH4 flux (FCH4) from mangrove ecosystems. In this study, we examined the temporal variations and biophysical drivers of ecosystem‐scale FCH4 in a subtropical estuarine mangrove wetland based on 3 years of eddy covariance measurements. Our results showed that daily mangrove FCH4 reached a peak of over 0.1 g CH4‐C m?2 day?1 during the summertime owing to a combination of high temperature and low salinity, while the wintertime FCH4 was negligible. In this mangrove, the mean annual CH4 emission was 11.7 ± 0.4 g CH4‐C m–2 year?1 while the annual net ecosystem CO2 exchange ranged between ?891 and ?690 g CO2‐C m?2 year?1, indicating a net cooling effect on climate over decadal to centurial timescales. Meanwhile, we showed that mangrove FCH4 could offset the negative radiative forcing caused by CO2 uptake by 52% and 24% over a time horizon of 20 and 100 years, respectively, based on the corresponding sustained‐flux global warming potentials. Moreover, we found that 87% and 69% of the total variance of daily FCH4 could be explained by the random forest machine learning algorithm and traditional linear regression model, respectively, with soil temperature and salinity being the most dominant controls. This study was the first of its kind to characterize ecosystem‐scale FCH4 in a mangrove wetland with long‐term eddy covariance measurements. Our findings implied that future environmental changes such as climate warming and increasing river discharge might increase CH4 emissions and hence reduce the net radiative cooling effect of estuarine mangrove forests.  相似文献   
146.
In nature similar protein folds accommodate distant sequences and support diverse functions. This observation coupled with the recognition that proteins can tolerate many homologous substitutions inspires protein engineers to use recombination to search for new functions within sequences encoding structurally related molecules. These searches have led to proteins with novel activities, diversified specificities and greater stabilities. Computational methods that exploit structural and evolutionary information are being used to design highly mutated yet still natively folded chimeric proteins and protein libraries.  相似文献   
147.
Understanding genetic variation for complex traits in heterogeneous environments is a fundamental problem in biology. In this issue of Molecular Ecology, Fournier‐Level et al. ( 2013 ) analyse quantitative trait loci (QTL) influencing ecologically important phenotypes in mapping populations of Arabidopsis thaliana grown in four habitats across its native European range. They used causal modelling to quantify the selective consequences of life history and morphological traits and QTL on components of fitness. They found phenology QTL colocalizing with known flowering time genes as well as novel loci. Most QTL influenced fitness via life history and size traits, rather than QTL having direct effects on fitness. Comparison of phenotypes among environments found no evidence for genetic trade‐offs for phenology or growth traits, but genetic trade‐offs for fitness resulted because flowering time had opposite fitness effects in different environments. These changes in QTL effects and selective consequences may maintain genetic variation among populations.  相似文献   
148.
149.
Studies on some plant species have shown that increasing the growth temperature gradually or pretreating with high temperature can lead to obvious photosynthetic acclimation to high temperature. To test whether this acclimation arises from heat adaptation of ribulose 1,5‐bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39) activation mediated by Rubisco activase (RCA), gene expression of RCA large isoform (RCAL) and RCA small isoform (RCAS) in rice was determined using a 4‐day heat stress treatment [40/30°C (day/night)] followed by a 3‐day recovery under control conditions [30/22°C (day/night)]. The heat stress significantly induced the expression of RCAL as determined by both mRNA and protein levels. Correlative analysis indicated that RCAS protein content was extremely significantly related to Rubisco initial activity and net photosynthetic rate (Pn) under both heat stress and normal conditions. Immunoblot analysis of the Rubisco–RCA complex revealed that the ratio of RCAL to Rubisco increased markedly in heat‐acclimated rice leaves. Furthermore, transgenic rice plants expressing enhanced amounts of RCAL exhibited higher thermotolerance in Pn and Rubisco initial activity and grew better at high temperature than wild‐type (WT) plants and transgenic rice plants expressing enhanced amounts of RCAS. Under normal conditions, the transgenic rice plants expressing enhanced amounts of RCAS showed higher Pn and produced more biomass than transgenic rice plants expressing enhanced amounts of RCAL and wild‐type plants. Together, these suggest that the heat‐induced RCAL may play an important role in photosynthetic acclimation to moderate heat stress in vivo, while RCAS plays a major role in maintaining Rubisco initial activity under normal conditions.  相似文献   
150.
Species interactions are integral drivers of community structure and can change from competitive to facilitative with increasing environmental stress. In subtidal marine ecosystems, however, interactions along physical stress gradients have seldom been tested. We observed seaweed canopy interactions across depth and latitudinal gradients to test whether light and temperature stress structured interaction patterns. We also quantified interspecific and intraspecific interactions among nine subtidal canopy seaweed species across three continents to examine the general nature of interactions in subtidal systems under low consumer pressure. We reveal that positive and neutral interactions are widespread throughout global seaweed communities and the nature of interactions can change from competitive to facilitative with increasing light stress in shallow marine systems. These findings provide support for the stress gradient hypothesis within subtidal seaweed communities and highlight the importance of canopy interactions for the maintenance of subtidal marine habitats experiencing environmental stress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号