首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3749篇
  免费   305篇
  国内免费   1篇
  4055篇
  2024年   4篇
  2023年   25篇
  2022年   65篇
  2021年   115篇
  2020年   63篇
  2019年   86篇
  2018年   87篇
  2017年   78篇
  2016年   153篇
  2015年   214篇
  2014年   220篇
  2013年   313篇
  2012年   310篇
  2011年   310篇
  2010年   191篇
  2009年   147篇
  2008年   246篇
  2007年   232篇
  2006年   238篇
  2005年   178篇
  2004年   174篇
  2003年   136篇
  2002年   113篇
  2001年   36篇
  2000年   33篇
  1999年   27篇
  1998年   30篇
  1997年   21篇
  1996年   15篇
  1995年   20篇
  1994年   20篇
  1993年   16篇
  1992年   8篇
  1991年   20篇
  1990年   12篇
  1989年   10篇
  1988年   11篇
  1987年   4篇
  1986年   4篇
  1985年   8篇
  1983年   5篇
  1981年   4篇
  1978年   3篇
  1976年   4篇
  1974年   4篇
  1973年   3篇
  1969年   4篇
  1967年   5篇
  1966年   3篇
  1949年   4篇
排序方式: 共有4055条查询结果,搜索用时 15 毫秒
961.
Alternative lengthening of telomere (ALT) tumors maintain telomeres by a telomerase-independent mechanism and are characterized by a nuclear structure called the ALT-associated PML body (APB). TRF2 is a component of a telomeric DNA/protein complex called shelterin. However, TRF2 function in ALT cells remains elusive. In telomerase-positive tumor cells, TRF2 inactivation results in telomere de-protection, activation of ATM, and consequent induction of p53-dependent apoptosis. We show that in ALT cells this sequence of events is different. First, TRF2 inactivation/silencing does not induce cell death in p53-proficient ALT cells, but rather triggers cellular senescence. Second, ATM is constitutively activated in ALT cells and colocalizes with TRF2 into APBs. However, it is only following TRF2 silencing that the ATM target p53 is activated. In this context, PML is indispensable for p53-dependent p21 induction. Finally, we find a substantial loss of telomeric DNA upon stable TRF2 knockdown in ALT cells. Overall, we provide insight into the functional consequences of shelterin alterations in ALT cells.  相似文献   
962.
Proteasomes recognize and degrade poly-ubiquitinylated proteins. In infectious disease, cells activated by interferons (IFNs) express three unique catalytic subunits β1i/LMP2, β2i/MECL-1 and β5i/LMP7 forming an alternative proteasome isoform, the immunoproteasome (IP). The in vivo function of IPs in pathogen-induced inflammation is still a matter of controversy. IPs were mainly associated with MHC class I antigen processing. However, recent findings pointed to a more general function of IPs in response to cytokine stress. Here, we report on the role of IPs in acute coxsackievirus B3 (CVB3) myocarditis reflecting one of the most common viral disease entities among young people. Despite identical viral load in both control and IP-deficient mice, IP-deficiency was associated with severe acute heart muscle injury reflected by large foci of inflammatory lesions and severe myocardial tissue damage. Exacerbation of acute heart muscle injury in this host was ascribed to disequilibrium in protein homeostasis in viral heart disease as indicated by the detection of increased proteotoxic stress in cytokine-challenged cardiomyocytes and inflammatory cells from IP-deficient mice. In fact, due to IP-dependent removal of poly-ubiquitinylated protein aggregates in the injured myocardium IPs protected CVB3-challenged mice from oxidant-protein damage. Impaired NFκB activation in IP-deficient cardiomyocytes and inflammatory cells and proteotoxic stress in combination with severe inflammation in CVB3-challenged hearts from IP-deficient mice potentiated apoptotic cell death in this host, thus exacerbating acute tissue damage. Adoptive T cell transfer studies in IP-deficient mice are in agreement with data pointing towards an effective CD8 T cell immune. This study therefore demonstrates that IP formation primarily protects the target organ of CVB3 infection from excessive inflammatory tissue damage in a virus-induced proinflammatory cytokine milieu.  相似文献   
963.
The inhibition of mevalonate pathway by the aminobisphosphonate alendronate (ALD) has been previously associated with an augmented lipopolysaccharide-induced interleukin-1beta (IL-1β) secretion in monocytes, as demonstrated in an auto-inflammatory disease known as mevalonate kinase deficiency (MKD). In this study we investigated the effect of ALD + LPS on monocyte cell line (Raw 264.7) death. ALD strongly augmented LPS-induced programmed cell death (PCD) as well as IL-1β secretion in Raw murine monocytes, whereas necrosis was rather unaffected. ALD + LPS induced caspase-3 activation. Inhibition of IL-1β stimulation partially restored cell viability. These findings suggest that the inhibition of mevalonate pathway, together with a bacterial stimulus, induce a PCD partly sustained by the caspase-3-related apoptosis and partly by caspase-1-associated pyroptosis. The involvement of pyroptosis is a novel hit in our cell model and opens discussions about its role in inflammatory cells with chemical or genetic inhibition of mevalonate pathway.  相似文献   
964.
Paternally expressed gene 10 (PEG10) is a mammalian gene that is essential for embryonic development in mice. The gene contains two overlapping open reading frames (ORF1 and ORF2) and is derived from a retroelement that acquired a cellular function. It is not known if both reading frames are required for PEG10 function. Synthesis of ORF2 would be possible only if programmed -1 frameshifting occurred during ORF1 translation. In this study the frameshifting activity of PEG10 was analyzed in vivo, and a potential role for ORF2 was investigated. Phylogenetic analysis demonstrated that PEG10 is highly conserved in therian mammals, with all species retaining the elements necessary for frameshifting as well as functional motifs in each ORF. The frameshift site of PEG10 was highly active in cultured cells and produced the ORF1-2 protein. In mice, endogenous ORF1 and an ORF1-2 frameshift protein were detected in the developing placenta and amniotic membrane from 9.5 days post-coitus through to term with a very high frameshift efficiency (>60%). Mutagenesis of the active site motif of a putative protease within ORF2 showed that this enzyme is active and participates in post-translational processing of PEG10 ORF1-2. Both PEG10 proteins were also detected in first trimester human placenta. By contrast, neither protein expression nor frameshifting was detected in adult mouse tissues. These studies imply that the ORF1-2 protein, synthesized utilizing the most efficient -1 frameshift mechanism yet documented in vivo, will have an essential function that is intrinsic to the importance of PEG10 in mammals.  相似文献   
965.
Pluripotent cells referred to as embryonic germ cells (EGCs) can be derived from the embryonic precursors of the mature gametes: the primordial germ cells (PGCs). A homozygous mutation (ter) of the dead-end homolog 1 gene (Dnd1) in the rat causes gonadal teratocarcinogenesis and sterility due to neoplastic transformation and loss of germ cells. We mated heterozygous ter/+ WKY-Dnd1ter/Ztm rats and were able to cultivate the first genital ridge-derived EGCs of the rat embryo at day 14.5 post coitum (pc). Genotyping revealed that ten EGC lines were Dnd1 deficient, while only one wild type cell line had survived in culture. This suggests that the inactivation of the putative tumor suppressor gene Dnd1 facilitates the immortalization of late EGCs in vitro. Injection of the wild type EGCs into blastocysts resulted in the first germ-line competent chimeras. These new pluripotent rat EGCs offer an innovative approach for studies on germ cell tumor development as well as a new tool for genetic manipulations in rats.  相似文献   
966.
It is well established that cyst-forming phytoplankton species are transported in ships' ballast tanks. However, there is increasing evidence that other phytoplankton species which do not encyst are also capable of surviving ballast transit. These species have alternative modes of nutrition (hetero- or mixotrophy) and/or are able to survive long-term darkness. In our studies of no-ballast-on-board vessels arriving in the Great Lakes, we tested for the presence of the harmful algal bloom species Aureococcus anophagefferens (brown tide) in residual (i.e., unpumpable) ballast water using methods based on the PCR. During 2001, the brown tide organism was detected in 7 of 18 ballast water tanks in commercial ships following transit from foreign ports. Furthermore, it was detected after 10 days of ballast tank confinement during a vessel transit in the Great Lakes, a significant result given the large disparity between the salinity tolerance for active growth of Aureococcus (>22 ppt) and the low salinity of the residual ballast water (~2 ppt). We also investigated the potential for smaller, recreational vessels to transport and distribute Aureococcus. During the summer of 2002, 11 trailered boats from the inland bays of Delaware and coastal bays of Maryland were sampled. Brown tide was detected in the bilge water in the bottoms of eight boats, as well as in one live-well sample. Commercial ships and small recreational boats are therefore implicated as potential vectors for long-distance transport and local-scale dispersal of Aureococcus.  相似文献   
967.
The small GTPases, Rac1 and RhoA, are pivotal regulators of several essential, but distinct cellular processes. Numerous G-protein-coupled receptors signal to these GTPases, but with different specificities. Specifically, Gi-coupled receptors (GiPCRs) are generally believed to activate Rac1, but not RhoA, a process involving Gbetagamma-dimers and phosphatidylinositol 3-kinase (PI3K). Here we show that, depending on the expression level of the 519 amino acid isoform of regulator of G-protein signalling 3 (RGS3L), prototypical GiPCRs, like M2 muscarinic, A1 adenosine, and alpha2-adrenergic receptors, activate either Rac1 or RhoA in human embryonic kidney cells and neonatal rat cardiomyocyte-derived H10 cells. The switch from Rac1 to RhoA activation in H10 cells was controlled by fibroblast growth factor-2 (FGF-2), lowering the expression of RGS3L. Activation of both, Rac1 and RhoA, seen at low and high expression levels of RGS3L, respectively, was sensitive to pertussis toxin and the PI3K inhibitor LY294002 and mediated by Gbetagamma-dimers. We conclude that RGS3L functions as a molecular switch, redirecting GiPCRs via Gbetagamma-dimers and PI3K from Rac1 to RhoA activation. Considering the essential roles of Rac1 and RhoA in many signalling pathways, this additional function of RGS3L indicates a specific role of this protein in cellular signalling networks.  相似文献   
968.
969.
970.
NADPH oxidase activation in either RAW264.7 cells or peritoneal macrophages (PM) derived from PPARγ wild-type mice increased reactive oxygen species (ROS) formation, caused PPARγ activation, heme oxygenase-1 (HO-1) induction, and concomitant IFN-β expression. In macrophages transduced with a dominant negative (d/n) mutant of PPARγ (RAW264.7 AF2) as well as PPARγ negative PM derived from Mac-PPARγ-KO mice, NADPH oxidase-dependent IFN-β expression was attenuated. As the underlying mechanism, we noted decreased HO-1 mRNA stability in RAW264.7 AF2 cells as well as PPARγ negative PM, compared to either parent RAW264.7 cells or wild-type PM. Assuming mRNA stabilization of HO-1 by PPARγ we transfected macrophages with a HO-1 3′-UTR reporter construct. The PPARγ agonist rosiglitazone significantly up-regulated luciferase expression in RAW264.7 cells, while it remained unaltered in RAW264.7 AF2 macrophages. Deletion of each of two AU-rich elements in the 3′-UTR HO-1 decreased luciferase activity in RAW264.7 cells. Using LPS as a NADPH oxidase activator, PM from Mac-PPARγ-KO mice showed a decreased HO-1 mRNA half-life in vitro and in vivo compared to PPARγ wild-type mice. These data identified a so far unappreciated role of PPARγ in stabilizing HO-1 mRNA, thus, contributing to the expression of the HO-1 target gene IFN-β.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号