全文获取类型
收费全文 | 119494篇 |
免费 | 8585篇 |
国内免费 | 20篇 |
专业分类
128099篇 |
出版年
2022年 | 733篇 |
2021年 | 1569篇 |
2020年 | 1310篇 |
2019年 | 1367篇 |
2018年 | 2813篇 |
2017年 | 2501篇 |
2016年 | 3580篇 |
2015年 | 5061篇 |
2014年 | 5316篇 |
2013年 | 6864篇 |
2012年 | 8202篇 |
2011年 | 7463篇 |
2010年 | 4899篇 |
2009年 | 3868篇 |
2008年 | 6017篇 |
2007年 | 5774篇 |
2006年 | 5648篇 |
2005年 | 4840篇 |
2004年 | 4869篇 |
2003年 | 4333篇 |
2002年 | 4071篇 |
2001年 | 2663篇 |
2000年 | 2489篇 |
1999年 | 2070篇 |
1998年 | 1063篇 |
1997年 | 795篇 |
1996年 | 842篇 |
1995年 | 796篇 |
1994年 | 729篇 |
1993年 | 657篇 |
1992年 | 1316篇 |
1991年 | 1185篇 |
1990年 | 1161篇 |
1989年 | 1249篇 |
1988年 | 1087篇 |
1987年 | 1081篇 |
1986年 | 952篇 |
1985年 | 1048篇 |
1984年 | 923篇 |
1983年 | 813篇 |
1982年 | 712篇 |
1979年 | 884篇 |
1978年 | 669篇 |
1977年 | 668篇 |
1975年 | 782篇 |
1974年 | 787篇 |
1973年 | 761篇 |
1972年 | 688篇 |
1969年 | 728篇 |
1968年 | 661篇 |
排序方式: 共有10000条查询结果,搜索用时 25 毫秒
991.
Búrigo M Roza CA Bassani C Fagundes DA Rezin GT Feier G Dal-Pizzol F Quevedo J Streck EL 《Neurochemical research》2006,31(11):1375-1379
It is well described that impairment of energy production has been implicated in the pathogenesis of a number of diseases. Although several advances have occurred over the past 20 years concerning the use and administration of electroconvulsive therapy (ECT) to minimize its side effects, little progress has been made in understanding its mechanism of action. In this work, our aim was to measure the activities of mitochondrial respiratory chain complexes II and IV and succinate dehydrogenase from rat brain after acute and chronic electroconvulsive shock (ECS). Our results showed that mitochondrial respiratory chain enzymes activities were increased after acute ECS in hippocampus, striatum and cortex of rats. Besides, we also demonstrated that complex II activity was increased after chronic ECS in cortex, while hippocampus and striatum were not affected. Succinate dehydrogenase, however, was inhibited after chronic ECS in striatum, activated in cortex and not affected in hippocampus. Finally, complex IV was not affected by chronic ECS in hippocampus, striatum and cortex. Our findings demonstrated that brain metabolism is altered by ECS. 相似文献
992.
Rodrigo Arreola José Luis Villalpando Jonathan Puente-Rivera Jorge Morales-Montor Enrique Rudiño-Piñera María Elizbeth Alvarez-Sánchez 《Molecular biotechnology》2018,60(8):563-575
Previously, metalloproteinase was isolated and identified from Trichomonas vaginalis, belonging to the aminopeptidase P-like metalloproteinase subfamily A/B, family M24 of clan MG, named TvMP50. The native and recombinant TvMP50 showed proteolytic activity, determined by gelatin zymogram, and a 50 kDa band, suggesting that TvMP50 is a monomeric active enzyme. This was an unexpected finding since other Xaa-Pro aminopeptidases/prolidases are active as a biological unit formed by dimers/tetramers. In this study, the evolutionary history of TvMP50 and the preliminary crystal structure of the recombinant enzyme determined at 3.4 Å resolution is reported. TvMP50 was shown to be a type of putative, eukaryotic, monomeric aminopeptidase P, and the crystallographic coordinates showed a monomer on a “pseudo-homodimer” array on the asymmetric unit that resembles the quaternary structure of the M24B dimeric family and suggests a homodimeric aminopeptidase P-like enzyme as a likely ancestor. Interestingly, TvMP50 had a modified N-terminal region compared with other Xaa-Pro aminopeptidases/prolidases with three-dimensional structures; however, the formation of the standard dimer is structurally unstable in aqueous solution, and a comparably reduced number of hydrogen bridges and lack of saline bridges were found between subunits A/B, which could explain why TvMP50 portrays monomeric functionality. Additionally, we found that the Parabasalia group contains two protein lineages with a “pita bread” fold; the ancestral monomeric group 1 was probably derived from an ancestral dimeric aminopeptidase P-type enzyme, and group 2 has a probable dimeric kind of ancestral eukaryotic prolidase lineage. The implications of such hypotheses are also presented. 相似文献
993.
Fernando M. Baidanoff Santiago A. Plano Fabio Doctorovich Sebastián A. Suárez Diego A. Golombek Juan J. Chiesa 《Journal of neurochemistry》2014,129(1):60-71
Most physiological processes in mammals are synchronized to the daily light:dark cycle by a circadian clock located in the hypothalamic suprachiasmatic nucleus. Signal transduction of light‐induced phase advances of the clock is mediated through a neuronal nitric oxide synthase‐guanilyl cyclase pathway. We have employed a novel nitric oxide‐donor, N‐nitrosomelatonin, to enhance the photic synchronization of circadian rhythms in hamsters. The intraperitoneal administration of this drug before a sub‐saturating light pulse at circadian time 18 generated a twofold increase of locomotor rhythm phase‐advances, having no effect over saturating light pulses. This potentiation was also obtained even when inhibiting suprachiasmatic nitric oxide synthase activity. However, N‐nitrosomelatonin had no effect on light‐induced phase delays at circadian time 14. The photic‐enhancing effects were correlated with an increased suprachiasmatic immunoreactivity of FBJ murine osteosarcoma viral oncogene and period1. Moreover, in vivo nitric oxide release by N‐nitrosomelatonin was verified by measuring nitrate and nitrite levels in suprachiasmatic nuclei homogenates. The compound also accelerated resynchronization to an abrupt 6‐h advance in the light:dark cycle (but not resynchronization to a 6‐h delay). Here, we demonstrate the chronobiotic properties of N‐nitrosomelatonin, emphasizing the importance of nitric oxide‐mediated transduction for circadian phase advances.
994.
Martin L. Decaris Claire L. Emson Kelvin Li Michelle Gatmaitan Flora Luo Jerome Cattin Corelle Nakamura William E. Holmes Thomas E. Angel Marion G. Peters Scott M. Turner Marc K. Hellerstein 《PloS one》2015,10(4)
Accumulation and degradation of scar tissue in fibrotic liver disease occur slowly, typically over many years. Direct measurement of fibrogenesis, the rate of scar tissue deposition, may provide valuable therapeutic and prognostic information. We describe here results from a pilot study utilizing in vivo metabolic labeling to measure the turnover rate of hepatic collagen and collagen-associated proteins in plasma for the first time in human subjects. Eight subjects with chronic liver disease were labeled with daily oral doses of 2H2O for up to 8 weeks prior to diagnostic liver biopsy and plasma collection. Tandem mass spectrometry was used to measure the abundance and fractional synthesis rate (FSR) of proteins in liver and blood. Relative protein abundance and FSR data in liver revealed marked differences among subjects. FSRs of hepatic type I and III collagen ranged from 0.2–0.6% per day (half-lives of 4 months to a year) and correlated significantly with worsening histologic fibrosis. Analysis of plasma protein turnover revealed two collagen-associated proteins, lumican and transforming growth factor beta-induced-protein (TGFBI), exhibiting FSRs that correlated significantly with FSRs of hepatic collagen. In summary, this is the first direct measurement of liver collagen turnover in vivo in humans and suggests a high rate of collagen remodeling in advanced fibrosis. In addition, the FSRs of collagen-associated proteins in plasma are measurable and may provide a novel strategy for monitoring hepatic fibrogenesis rates. 相似文献
995.
996.
997.
998.
999.
Ellenberg’s indicator values have been suggested as useful method of estimating site conditions using plants. We examined whether Ellenberg’s R values are suitable for indicating soil reaction and if calibration to physical pH measurements can improve bioindication in oligotrophic and mesotrophic submontane broad-leaved forests in Slovakia. Vegetation relevés and pH-H2O and pH-CaCl2 soil reaction were recorded for this purpose. Ellenberg’s R values (R e) were compared to Jurko’s indicator values (R j) and a set of species R values and tolerances (T), which were calibrated with physical pH data using the weighted averaging (R w, T w) and Huisman-Olff-Fresco modelling (R h, T h). Original R e values were then recalibrated with measured pH data to establish new, adjusted set of scores (R c, T c) at Ellenberg’s scale. The Re values are significantly correlated with the other R values, and they demonstrate similar frequency distribution to R j and R w values for the studied species pool. The frequency distribution becomes similar across all the R values when indifferent species were excluded. The performance of all the indicator values in terms of bioindication was tested. Relevé means of the R values were regressed on the field pH measurements. The performance of bioindication varied from 36% to 49% of the explained variance for pH-CaCl2, with the R e and R c values yielding 46% and 49% respectively. The bioindication slightly improved for all calibrated methods (R w, R h and R c) when species were weighted inversely with their tolerances — the performance varied from 42% to 51%, and the R c values performed most effectively. We concluded that Ellenberg’s R values represent a powerful system for bioindicating soil acidity when compared to the other alternatives, with pH-CaCl2 showing better results than pH-H2O. Recalibration of Ellenberg’s values to the measured data improved the indicator system. 相似文献
1000.
Sexual incompatibility in Rosaceae fruit tree species: molecular interactions and evolutionary dynamics 总被引:1,自引:0,他引:1
Fruit crops have a growing economic importance worldwide and molecular genetics might be useful in solving many problems that arise during commercial production. One of the fields that have attracted intense attention is the molecular basis of self-incompatibility that may result in low fruit set. In tree fruits of the Rosaceae family, the incompatibility reactions take place between the pistil S-ribonuclease (S-RNase) and the pollen-expressed S-haplotype specific F-box (SFB) proteins. In most cases, the loss of self-incompatibility was associated with mutations in the S-RNase or SFB genes. A total of 27 non-functional S-haplotypes have been identified and characterized, most (24) of which emerged as a consequence of natural mutations. In the Prunoideae, most haplotypes are pollen-part mutants (50 %), while 8 are stylar-part mutants (36 %), one haplotype shows both pollen- and stylar-part mutations, and molecular changes for two haplotypes still have not been clarified. In contrast, non-functional natural haplotypes in the Maloideae are all stylar-part mutants. The analysis of such mutants may shed light on underlying molecular mechanisms as was the case with the establishment of the general inhibitor model that describes interactions between pollen and pistil S-proteins. However, several other molecules were supposed to contribute to the molecular interactions, at least in Solanaceae, a family with a similar self-incompatibility system. This review also endeavours to delineate the evolutionary implications of the S-locus mutations and collect limited data on non-S-locus molecular interactions and signaling events after self- and cross-pollination of fruit tree species. 相似文献