首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40014篇
  免费   4109篇
  国内免费   11篇
  44134篇
  2023年   175篇
  2022年   349篇
  2021年   670篇
  2020年   486篇
  2019年   566篇
  2018年   701篇
  2017年   631篇
  2016年   1043篇
  2015年   1728篇
  2014年   1881篇
  2013年   2331篇
  2012年   2866篇
  2011年   2783篇
  2010年   1850篇
  2009年   1609篇
  2008年   2246篇
  2007年   2236篇
  2006年   2126篇
  2005年   1894篇
  2004年   1887篇
  2003年   1680篇
  2002年   1651篇
  2001年   652篇
  2000年   608篇
  1999年   621篇
  1998年   432篇
  1997年   352篇
  1996年   340篇
  1995年   350篇
  1994年   308篇
  1993年   305篇
  1992年   413篇
  1991年   355篇
  1990年   351篇
  1989年   363篇
  1988年   365篇
  1987年   335篇
  1986年   268篇
  1985年   298篇
  1984年   303篇
  1983年   270篇
  1982年   258篇
  1981年   231篇
  1980年   210篇
  1979年   218篇
  1978年   182篇
  1977年   185篇
  1976年   184篇
  1975年   199篇
  1973年   165篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
Metallothionein (MT) is a ubiquitous mammalian protein comprising 61 or 62 nonaromatic amino acids of which 20 are cysteine residues. The high sulfhydryl content imparts to this protein a unique and remarkable ability to bind multiple metal ions in structurally significant metal–thiolate clusters. MT can bind seven divalent metal ions per protein molecule in two domains with exclusive tetrahedral metal coordination. The domain stoichiometries for the M7S20 structure are M4(Scys)11 (α domain) and M3(Scys)9 (β domain). Up to 12 Cu(I) ions can displace the 7 Zn2+ ions bound per molecule in Zn7–MT. The incoming Cu(I) ions adopt a trigonal planar geometry with domain stoichiometries for the Cu12S20 structure of Cu6(Scys)11 and Cu6(Scys)9 for the α and β domains, respectively. The circular dichroism (CD) spectra recorded as Cu+ is added to Zn7–MT to form Cu12–MT directly report structural changes that take place in the metal binding region. The spectrum arises under charge transfer transitions between the cysteine S and the Cu(I); because the Cu(I)–thiolate cluster units are located within the chiral binding site, intensities in the CD spectrum are directly related to changes in the binding site. The CD technique clearly indicates stoichiometries of several Cu(I)–MT species. Model Cu(I)–thiolate complexes, using the tripeptide glutathione as the sulfhydryl source, were examined by CD spectroscopy to obtain transition energies and the Cu(I)–thiolate coordination geometries which correspond to these bands. Possible structures for the Cu(I)–thiolate clusters in the α and β domains of Cu12–MT are proposed. © 1994 Wiley-Liss, Inc.  相似文献   
102.
Cell-substrate adhesion was quantified for two cultured mesothelioma cell lines (epitheliomatus and sarcomatous) on glass, fibronectin and laminin substrates. Interference reflection microscopy (IRM) was used to image the adhesion patterns of cells and a grey level analysis was employed to quantify adhesion. Sarcomatous cells demonstrated marked adhesion to glass and fibronectin-coated substrates but not to laminin-coated substrate, with the greatest adhesion occurring on the fibronectin-coated surface. This adhesion was accompanied by cytoplasmic spreading. By contrast, epitheliomatous cells showed little tendency to adhere to any of the substrates and only showed significant spreading when in contact with the laminin substrate (P < 0.01). A bioassay was used to determine the metastatic potential of each of the cell lines. Via the intravenous route, the sarcomatous cells killed the host rats in 24.7 ± 1.5 (S.D.) days compared to 27.3 ± 0.9 (S.D.) days for the epitheliomatous cells (P < 0.01). After subcutaneous inoculation of tumour cells, the sarcomatous cells killed the host rats in 54.7 ± 0.7 (S.D.) days compared to 48.5 ± 0.5 (S.D.) days for the epitheliomatous cells (P < 0.01). We conclude that the results of the metastasis bioassays were consistent with the predicted behavior of these cell lines based on their ability to adhere to substrates in the in vitro adhesion assays.  相似文献   
103.
Size structure of the metazoan community in a Piedmont stream   总被引:1,自引:0,他引:1  
We characterized the size structure of virtually the entire metazoan community in a fourth order, sandybottomed Piedmont stream during late summer. Our study, the first to sample across all habitat types and sizes of metazoans in an aquatic ecosystem, indicates that at the community level, stream size spectra may be bimodal for the benthos or trimodal when fish are included. Animals spanning 10 orders of magnitude in dry mass (from gastrotrichs to fish) were quantitatively collected from nine habitat types. The bimodal benthic size spectrum was characterized by a meiofaunal component (mostly oligochaetes and micro-crustacea) and a macrobenthic component (mostly the introduced asiatic clam, Corbicula fluminea). Insects contributed little to overall standing crop. Size-specific contribution to whole-community metabolism was assessed using allometric equations for respiration, and we found a distinctly bimodal distribution across the entire metazoan size range, with peaks in the meiofaunal and benthic macrofaunal size ranges. Our bimodal benthic size spectrum is similar to that observed for marine benthos but not to other freshwater benthic systems, possibly because the entire range of habitat types and/or animal sizes were not sampled in the latter. Numerous factors may influence size spectra in stream ecosystems, including local geomorphic (habitat) conditions, water level fluctuations, species introductions, and predation processes.  相似文献   
104.
Summary Polyclonal antibodies were produced against the highly purified enzymes L-hydantoinase, hydantoin-racemase and L-N-carbamoylamino acid amidohydrolase of Arthrobacter aurescens DSM 3747. In order to exploit these antibodies for basic research (molecular biology) or bioengineering (process development), the serological properties had to be characterized. Both, the hydantoinase- and carbamoylase-antibodies were observed to be monofunctional, whereas the hydantoin-racemase-antibody was found to be additionally specific against the L-hydantoinase. Monospecificity was realized after affinity chromatography. Investigations on serological crossreactions with several linear- and cyclic amidases (e.g. hydantoinases) as well as hydantoin-racemases are demonstrated in this paper.Deticated to Prof. Dr. Klaus Mosbach on the occation of his 60th birthday.  相似文献   
105.
E. MARTIN GRIBBON, J.G. SHOESMITH, W.J. CUNLIFFE AND K.T. HOLLAND. 1994. The effect of oxygen on the in vitro propagation of Propionibacterium acnes was investigated under defined culture conditions. This micro-organism is the predominant bacterial resident within the pilosebaceous follicles of sebum-rich areas of human skin. The organism was grown in continuous culture in defined synthetic medium with glucose as the main carbon-energy source at various air saturation concentrations and in the presence and absence of light. Steady state continuous cultures were achieved at very low oxygen tensions in the presence of light, and at higher levels of oxygen when non-illuminated. Culture biomass yields were higher than those of anaerobic cultures. Bacterial cells were inactivated in the presence of light at high oxygen concentrations because of photosensitization reactions involving excess oxygen and microbial porphyrin species.  相似文献   
106.
Introduction     
Clynes M 《Cytotechnology》1993,12(1-3):vii-viii
  相似文献   
107.
Coronavirus disease 2019 (COVID-19) is a systemic inflammatory condition with high mortality that may benefit from personalized medicine and high-precision approaches. COVID-19 patient plasma was analysed with targeted proteomics of 1161 proteins. Patients were monitored from Days 1 to 10 of their intensive care unit (ICU) stay. Age- and gender-matched COVID-19-negative sepsis ICU patients and healthy subjects were examined as controls. Proteomic data were resolved using both cell-specific annotation and deep-analysis for functional enrichment. COVID-19 caused extensive remodelling of the plasma microenvironment associated with a relative immunosuppressive milieu between ICU Days 3–7, and characterized by extensive organ damage. COVID-19 resulted in (1) reduced antigen presentation and B/T-cell function, (2) increased repurposed neutrophils and M1-type macrophages, (3) relatively immature or disrupted endothelia and fibroblasts with a defined secretome, and (4) reactive myeloid lines. Extracellular matrix changes identified in COVID-19 plasma could represent impaired immune cell homing and programmed cell death. The major functional modules disrupted in COVID-19 were exaggerated in patients with fatal outcome. Taken together, these findings provide systems-level insight into the mechanisms of COVID-19 inflammation and identify potential prognostic biomarkers. Therapeutic strategies could be tailored to the immune response of severely ill patients.  相似文献   
108.
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号