首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40278篇
  免费   4150篇
  国内免费   20篇
  2022年   346篇
  2021年   672篇
  2020年   489篇
  2019年   567篇
  2018年   703篇
  2017年   637篇
  2016年   1043篇
  2015年   1733篇
  2014年   1885篇
  2013年   2336篇
  2012年   2874篇
  2011年   2792篇
  2010年   1859篇
  2009年   1623篇
  2008年   2262篇
  2007年   2243篇
  2006年   2136篇
  2005年   1897篇
  2004年   1895篇
  2003年   1683篇
  2002年   1651篇
  2001年   655篇
  2000年   609篇
  1999年   628篇
  1998年   437篇
  1997年   358篇
  1996年   350篇
  1995年   353篇
  1994年   312篇
  1993年   306篇
  1992年   415篇
  1991年   356篇
  1990年   349篇
  1989年   365篇
  1988年   365篇
  1987年   334篇
  1986年   269篇
  1985年   298篇
  1984年   303篇
  1983年   273篇
  1982年   257篇
  1981年   232篇
  1980年   212篇
  1979年   217篇
  1978年   186篇
  1977年   184篇
  1976年   183篇
  1975年   198篇
  1974年   166篇
  1973年   164篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
141.
Infrared spectroscopy has been used to characterize the thermal-phase behavior of fully hydrated 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine (POPS) and 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS) as well as their interaction with Li+ and Ca2+. The order-disorder transition of POPS-NH4+ is at 17 degrees C; in the presence of Li+ a POPS-Li+ complex is formed, and the transition temperature of this complex is 40 degrees C. DOPS-NH4+ has an order-disorder transition at -11 degrees C, and unlike POPS the addition of Li+ has no effect on the thermal behavior of DOPS-NH4+. This indicates that the binding of Li+ to DOPS is negligible or very weak. Li+ binds to the phosphate and carboxylate groups of POPS, and as a result these groups lose their water of hydration. Li+ binding induces a conformational change, probably in the glycerol backbone of POPS; however, the conformation of the two P-O ester bonds remains gauche-gauche as in POPS-NH4+. Both POPS and DOPS form crystalline complexes with Ca2+. As a result of Ca2+ binding to the phosphate, this group loses its water of hydration and there is a conformational change in the P-O ester bonds from gauche-gauche to antiplanar-antiplanar. In contrast to the POPS-Li+ complex, the carboxylate group remains hydrated in the Ca2+ complexes. Furthermore, in these PS-Ca2+ complexes a new hydrogen bond is formed between one of the ester C=O groups and probably water. Such a situation is not found in the NH4+ and Li+ salts of phosphatidylserine.  相似文献   
142.
A Raman spectrometer that provides both subpicosecond resolution and independent, tunable pump and probe pulses is described. The spectrometer is employed to obtain time-resolved spectra of (carbonmonoxy)hemoglobin (HbCO) at times from 0.2 to 95 ps subsequent to ligand photodissociation. The spectra are interpreted in terms of a vibrationally hot heme that cools substantially in 10 ps. Concomitant with the proposed vibrational cooling is a slower relaxation, which we suggest results from a protein response to heme doming induced by ligand detachment. Results and interpretations are discussed in the context of current models of the heme photophysics and of hemoglobin reactivity.  相似文献   
143.
D Chen  K T Yue  C Martin  K W Rhee  D Sloan  R Callender 《Biochemistry》1987,26(15):4776-4784
We report the Raman spectra of reduced and oxidized nicotinamide adenine dinucleotide (NADH and NAD+, respectively) and adenosine 5'-diphosphate ribose (ADPR) when bound to the coenzyme site of liver alcohol dehydrogenase (LADH). The bound NADH spectrum is calculated by taking the classical Raman difference spectrum of the binary complex, LADH/NADH, with that of LADH. We have investigated how the bound NADH spectrum is affected when the ternary complexes with inhibitors are formed with dimethyl sulfoxide (Me2SO) or isobutyramide (IBA), i.e., LADH/NADH/Me2SO or LADH/NADH/IBA. Similarly, the difference spectra of LADH/NAD+/pyrazole or LADH/ADPR with LADH are calculated. The magnitude of these difference spectra is on the order of a few percent of the protein Raman spectrum. We report and discuss the experimental configuration and control procedures we use in reliably calculating such small difference signals. These sensitive difference techniques could be applied to a large number of problems where the classical Raman spectrum of a "small" molecule, like adenine, bound to the active site of a protein is of interest. The spectrum of bound ADPR allows an assignment of the bands of the bound NADH and NAD+ spectra to normal coordinates located primarily on either the nicotinamide or the adenine moiety. By comparing the spectra of the bound coenzymes with model compound data and through the use of deuterated compounds, we confirm and characterize how the adenine moiety is involved in coenzyme binding and discuss the validity of the suggestion that the adenine ring is protonated upon binding. The nicotinamide moiety of NADH shows significant molecular changes upon binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
144.
Factors in vitreous humour which regulate prostaglandin production were investigated using cultured rabbit chorioretinal fibroblasts. These cells produced predominantly prostaglandin E2, 6-ketoprostaglandin F1 alpha, a compound likely to be a metabolite of prostaglandin E2 and 5-hydroxyeicosatetraenoic acid. The synthesis of 6-ketoprostaglandin F1 alpha was nearly completely inhibited by the cyclooxygenase inhibitor aspirin and partially inhibited by 10(-6) M dexamethasone (49%) and 10(-5) M forskolin (68%). Addition of 10% rabbit vitreous humour to subconfluent cells maintained in Dulbecco's modified Eagle's medium plus 1% fetal bovine serum resulted in stimulation of 6-ketoprostaglandin F1 alpha production by as much as 246% as measured by radioimmunoassay. Chorioretinal fibroblasts labelled by [3H]arachidonic acid incorporation into cellular phospholipids synthesised greater amounts of all labelled arachidonic acid metabolites in response to vitreous humour. It was concluded, therefore, that there are factors present in vitreous humour of molecular weight above 10 kDa which are capable of stimulating cellular cyclooxygenase activity. Confluent cells also responded to a factor(s) present in vitreous humour. The fraction of less than 10 kDa inhibited 6-ketoprostaglandin F1 alpha production by 50% when used at a concentration of 10%. Furthermore, 6-ketoprostaglandin F1 alpha production in confluent cells (but not subconfluent cells) was inhibited to 40% of control levels by vitamin C at a concentration of 1 mg/100 ml. The latter result points to an inhibitory role for vitamin C in vitreous humour. We conclude, therefore, that vitreous humour contains factors important for the regulation of prostaglandin metabolism in the eye.  相似文献   
145.
Much interest has currently been attached to the length distribution of microtubules polymerized in vitro and the related question of their possible 'dynamic instability'. Fundamental to this question is the mechanism of microtubule nucleation, which controls the rates of assembly and disassembly of microtubule protein in vitro. These kinetics are affected by a number of factors, including both the guanine nucleotides, GTP and GDP, and magnesium ion. Mg2+ exerts complex effects, as indicated by the existence of an optimal Mg2+ concentration for the maximum assembly rate of microtubule protein, and we investigate these effects in this report. At [Mg2+] greater than 0.5 mM, the characteristic lag-phase is substantially increased and the rate of assembly is greatly reduced without affecting the critical concentration significantly. We show that increasing [Mg2+] has two effects on the assembly process: nucleation is less efficient and the intrinsic rate constant for the elongation reaction is reduced. Lowering [Mg2+] (less than 0.5 mM) also inhibits nucleation. These effects of varying [Mg2+] can be explained predominantly in terms of enhanced stability of the microtubule-associated protein-containing oligomeric species present in the microtubule protein preparation. [Mg2+] is thus found to be a further important factor in microtubule nucleation, and hence, in determining length distributions in assembling microtubules.  相似文献   
146.
Seminiferous tubule involution in elderly men   总被引:3,自引:0,他引:3  
The observation of different types of seminiferous tubules (from tubules with normal spermatogenesis to sclerosed tubules) in aging human testes points to the progressive stages of tubular involution in elderly men. The tubules with hypospermatogonesis (reduced number of elongated spermatids) show numerous morphological anomalies in the germ cells, including multinucleated cells. Abnormal germ cells degenerate, causing Steroli cell vacuolation. These vacuoles correspond to dilations of the extracellular spaces resulting from the premature exfoliation of germ cells. Degenerating cells that are phagocytized by Sertoli cells lead to an accumulation of lipid droplets in the Sertoli cell cytoplasm. The loss of germ cells begins with spermatids, but progressively affects the preceding germ cell types, and tubules with maturation arrested at the level of spermatocytes or spermatogonia are observed. Simultaneously, an enlargement of the tunica propria occurs. This leads to the formation of sclerosed tubules, some of which display a low seminiferous epithelium consisting of a few cells--including lipid-loaded Sertoli cells and both Ap and Ad spermatogonia--and others, showing complete sclerosis, are devoid of seminiferous epithelium. The development of tubular involution is similar to that reported after experimental ischemia, which also seems to cause nonspecific effects on the testis such as multinucleate cells, vacuoles, and increased lipids in Sertoli cells.  相似文献   
147.
Human retroviral sequences on the Y chromosome.   总被引:1,自引:0,他引:1       下载免费PDF全文
Novel endogenous human retroviral sequences were cloned by low-stringency hybridization, using the pol gene of endogenous human retrovirus 51-1. One clone, lambda NP-2, contained gag, pol, env, and long terminal repeat sequences related to the corresponding portions of clone 51-1 and the closely related full-length endogenous human retrovirus 4-1. The sequence of the env gene of NP-2 was 73% homologous to that of 4-1. Genomic Southern blots of male and female DNAs showed that NP-2 is located on the Y chromosome and that the Y chromosome also contains one other sequence closely related to the env and 3' flanking regions of NP-2. Conservation of flanking DNA suggests that the second Y chromosome copy of the NP-2 env sequence arose by gene duplication rather than provirus insertion.  相似文献   
148.
Regulatory properties of brain glutamate decarboxylase   总被引:13,自引:0,他引:13  
1. Glutamate decarboxylase is a focal point for controlling gamma-aminobutyric acid (GABA) synthesis in brain. Several factors that appear to be important in the regulation of GABA synthesis have been identified by relating studies of purified glutamate decarboxylase to conditions in vivo. 2. The interaction of glutamate decarboxylase with its cofactor, pyridoxal 5'-phosphate, is a regulated process and appears to be one of the major means of controlling enzyme activity. The enzyme is present in brain predominantly as apoenzyme (inactive enzyme without bound cofactor). Studies with purified enzyme indicate that the relative amounts of apo- and holoenzyme are determined by the balance in a cycle that continuously interconverts the two. 3. The cycle that interconverts apo- and holoenzyme is part of the normal catalytic mechanism of the enzyme and is strongly affected by several probable regulatory compounds including pyridoxal 5'-phosphate, ATP, inorganic phosphate, and the amino acids glutamate, GABA, and aspartate. ATP and the amino acids promote apoenzyme formation and pyridoxal 5'-phosphate and inorganic phosphate promote holoenzyme formation. 4. Numerous studies indicate that brain contains multiple molecular forms of glutamate decarboxylase. Multiple forms that differ markedly in kinetic properties including their interactions with the cofactor have been isolated and characterized. The kinetic differences among the forms suggest that they play a significant role in the regulation of GABA synthesis.  相似文献   
149.
The title disaccharide glycoside was synthesized by halide ion-promoted glycosidation, using methanol and the disaccharide bromide derived from methyl 2-azido-3-O-(2,3,4,6-tetra-O-benzoyl--d-galactopyranosyl)-4,6-O-benzylidene-2-deoxy-1-thio--d-galactopyranoside. This derivative in turn was prepared by silver triflate-promoted condensation of monosaccharide derivatives.  相似文献   
150.
Carbon and nitrogen metabolism in ectomycorrhizal fungi and ectomycorrhizas   总被引:7,自引:0,他引:7  
F Martin  M Ramstedt  K S?derh?ll 《Biochimie》1987,69(6-7):569-581
The literature concerning the metabolism of carbon and nitrogen compounds in ectomycorrhizal associations of trees is reviewed. The absorption and translocation of mineral ions by the mycelia require an energy source and a reductant which are both supplied by respiratory catabolism of carbohydrates produced by the host plant. Photosynthates are also required to generate the carbon skeletons for amino acid and carbohydrate syntheses during the growth of the mycelia. Competition for photosynthates occurs between the fungal cells and the various vegetative sinks in the host tree. The nature of carbon compounds involved in these processes, their routes of metabolism, the mechanisms of control and the partitioning of metabolites between the various sites of utilization are only poorly understood. Both ascomycetous and basidiomycetous ectomycorrhizal fungi synthesize and some, if not all, accumulate mannitol, trehalose and triglycerides. The fungal strains employ the Embden--Meyerhof pathway of glucose catabolism and the key enzymes of the pentose phosphate pathway (6-phosphogluconate dehydrogenase, glucose-6-phosphate dehydrogenase, transaldolase and transketolase). Anaplerotic CO2 fixation, via pyruvate carboxylase and/or phosphoenolpyruvate carboxykinase, provides high pools of amino acids. This process could be important in the recapture and assimilation of respired CO2 in the rhizosphere. The ectomycorrhizas are thought to contain the Embden--Meyerhof pathway, the pentose phosphate pathway and the tricarboxylic acid cycle, which provide the carbon skeletons for the assimilation of ammonia into amino acids. The main route of assimilation of ammonia appears to be through the glutamine synthetase-glutamate synthase cycle in the ectomycorrhizas. Glutamate dehydrogenase plays a minor role in this process. Glutamate dehydrogenase and glutamine synthetase are present in free-living ectomycorrhizal fungi and they participate in the assimilation of ammonia and the synthesis of amino acids through the glutamate dehydrogenase/glutamine synthetase sequence. In both in vitro cultures of fungi and ectomycorrhizas, the assimilated nitrogen accumulates in glutamine. Glutamine, but also ammonia, are thought to be exported from the fungal tissues to the host cells. Studies on the metabolism of ectomycorrhizas and ectomycorrhizal fungi have focused on the metabolic pathways and compounds which accumulate in the symbiotic tissues. Studies on regulation of the overall process, and the control of enzyme activity in particular, are still fragmentary.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号