首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40167篇
  免费   4154篇
  国内免费   11篇
  44332篇
  2023年   175篇
  2022年   349篇
  2021年   670篇
  2020年   487篇
  2019年   567篇
  2018年   703篇
  2017年   631篇
  2016年   1047篇
  2015年   1729篇
  2014年   1883篇
  2013年   2332篇
  2012年   2873篇
  2011年   2794篇
  2010年   1856篇
  2009年   1619篇
  2008年   2250篇
  2007年   2246篇
  2006年   2135篇
  2005年   1902篇
  2004年   1904篇
  2003年   1689篇
  2002年   1663篇
  2001年   659篇
  2000年   613篇
  1999年   625篇
  1998年   436篇
  1997年   353篇
  1996年   343篇
  1995年   352篇
  1994年   313篇
  1993年   314篇
  1992年   415篇
  1991年   359篇
  1990年   361篇
  1989年   366篇
  1988年   371篇
  1987年   335篇
  1986年   270篇
  1985年   302篇
  1984年   305篇
  1983年   275篇
  1982年   260篇
  1981年   234篇
  1980年   211篇
  1979年   219篇
  1978年   182篇
  1977年   183篇
  1976年   184篇
  1975年   198篇
  1973年   165篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
981.
Sumary 1. We investigate here for the first time in primate brain the combinatorial expression of the three major functionally relevant proteins for catecholaminergic neurotransmission tyrosine hydroxylase (TH), aromatic acid acid decarboxylase (AADC), and the brain-specific isoform of the vesicular monoamine transporter, VMAT2, using highly specific antibodies and immunofluorescence with confocal microscopy to visualize combinatorial expression of these proteins.2. In addition to classical TH, AADC, and VMAT2-copositive catecholaminergic neurons, two unique kinds of TH-positive neurons were identified based on co-expression of AADC and VMAT2.3. TH and AADC co-positive, but VMAT2-negative neurons, are termed “nonexocytotic catecholaminergic TH neurons.” These were found in striatum, olfactory bulb, cerebral cortex, area postrema, nucleus tractus solitarius, and in the dorsal motor nucleus of the vagus.4. TH-positive neurons expressing neither AADC nor VMAT2 are termed “dopaergic TH neurons.” We identified these neurons in supraoptic, paraventricular and periventricular hypothalamic nuclei, thalamic paraventicular nucleus, habenula, parabrachial nucleus, cerebral cortex and spinal cord. We were unable to identify any dopaergic (TH-positive, AADC-negative) neurons that expressed VMAT2, suggesting that regulatory mechanisms exist for shutting off VMAT2 expression in neurons that fail to biosynthesize its substrates.5. In several cases, the corresponding TH phenotypes were identified in the adult rat, suggesting that this rodent is an appropriate experimental model for further investigation of these TH-positive neuronal cell groups in the adult central nervous system. Thus, no examples of TH and VMAT2 co-positive neurons lacking AADC expression were found in rodent adult nervous system.6. In conclusion, the adult mammalian nervous system contains in addition to classical catecholaminergic neurons, cells that can synthesize dopamine, but cannot transport and store it in synaptic vesicles, and neurons that can synthesize only L-dopa and lack VMAT2 expression. The presence of these additional populations of TH-positive neurons in the adult primate CNS has implications for functional catecholamine neurotransmission, its derangement in disease and drug abuse, and its rescue by gene therapeutic maneuvers in neurodegenerative diseases such as Parkinson's disease.  相似文献   
982.
Overactive matrix metalloproteinases (MMPs) are associated with a variety of disease states. Therefore, their inhibition is a highly desirable goal. Yet, more than a decade of worldwide activity has not produced even one clinically useful inhibitor. Because of the crucial role of zinc in the activity of the enzyme, the design of inhibitors is usually based upon a so-called zinc binding group (ZBG). Yet, many of the hitherto synthesized potent inhibitors failed clinically, presumably because they bind stronger to metals other than zinc. We have developed in vivo potent inhibitors based on the carbamoylphosphonic group as a putative ZBG. In this paper we report stability constants for Ca(II), Mg(II), Zn(II) and Cu(II) complexes of two potent, in vivo active, MMP inhibitors, cyclopentylcarbamoylphosphonic acid (1) and 2-(N,N-dimethylamino)ethylcarbamoylphosphonic acid (2). Precipitation prevented the determination of stability constants for iron(III) complexes of 1 and 2. For comparison with carbamoylphosphonates 1 and 2, we synthesized 2-cyclohexyl-1,1-difluoroethylphosphonic acid (3), which does not inhibit MMP, and determined the stability constants of its complexes with Mg(II), Ca(II) and Zn(II). Comparison with the values obtained from the complexes of 1 and 2 with those from 3 indicates participation of the C=O group in the metal binding of the former compounds. The complex stability orders for both 1 and 2 are Ca(II)<Mg(II)<Zn(II)<Cu(II). In addition, the results indicate that at pH>8 the dimethylamino group of compound 2 can also participate in the binding of the transition metals Cu and Zn. On the other hand, the amino group in carbamoylphosphonic acid 2 lowers the stability of the complexes with metals favoring oxygen ligands (Ca, Mg and Fe) and increases the selectivity towards Zn. These results are helpful for rationalizing the results observed on our MMP inhibitors hitherto examined, and are expected to be useful for the design of new selective inhibitors.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00775-004-0524-5  相似文献   
983.
Trichomonas is an amitochondriate parasitic protozoon specialized for an anaerobic lifestyle. Nevertheless, it is exposed to oxygen and is able to cope with the resultant oxidative stress. In the absence of glutathione, cysteine has been thought to be the major antioxidant. We now report that the parasite contains thioredoxin reductase, which functions together with thioredoxin and thioredoxin peroxidase to detoxify potentially damaging oxidants. Thioredoxin reductase and thioredoxin also reduce cystine and so may play a role in maintaining the cellular cysteine levels. The importance of the thioredoxin system as one of the major antioxidant defense mechanisms in Trichomonas was confirmed by showing that the parasite responds to environmental changes resulting in increased oxidative stress by up-regulating thioredoxin and thioredoxin peroxidases levels. Sequence data indicate that the thioredoxin reductase of Trichomonas differs fundamentally in structure from that of its human host and thus may represent a useful drug target. The protein is generally similar to thioredoxin reductases present in other lower eukaryotes, all of which probably originated through horizontal gene transfer from a prokaryote. The phylogenetic signal in thioredoxin peroxidase is weak, but evidence from trees suggests that this gene has been subject to repeated horizontal gene transfers from different prokaryotes to different eukaryotes. The data are thus consistent with the complexity hypothesis that predicts that the evolution of simple pathways such as the thioredoxin cascade are likely to be affected by horizontal gene transfer between species.  相似文献   
984.
Suppression of CD4+ T lymphocyte effector functions by CD4+CD25+ cells in vivo   总被引:10,自引:0,他引:10  
CD4+CD25+ regulatory T cells have been extensively studied during the last decade, but how these cells exert their regulatory function on pathogenic effector T cells remains to be elucidated. Naive CD4+ T cells transferred into T cell-deficient mice strongly expand and rapidly induce inflammatory bowel disease (IBD). Onset of this inflammatory disorder depends on IFN-gamma production by expanding CD4+ T cells. Coinjection of CD4+CD25+ regulatory T cells protects recipient mice from IBD. In this study, we show that CD4+CD25+ regulatory T cells do not affect the initial activation/proliferation of injected naive T cells as well as their differentiation into Th1 effectors. Moreover, naive T cells injected together with CD4+CD25+ regulatory T cells into lymphopenic hosts are still able to respond to stimuli in vitro when regulatory T cells are removed. In these conditions, they produce as much IFN-gamma as before injection or when injected alone. Finally, when purified, they are able to induce IBD upon reinjection into lymphopenic hosts. Thus, prevention of IBD by CD4+CD25+ regulatory T cells is not due to deletion of pathogenic T cells, induction of a non reactive state (anergy) among pathogenic effector T cells, or preferential induction of Th2 effectors rather than Th1 effectors; rather, it results from suppression of T lymphocyte effector functions, leading to regulated responses to self.  相似文献   
985.
The K1 capsule is an essential virulence determinant of Escherichia coli strains that cause meningitis in neonates. Biosynthesis and transport of the capsule, an alpha-2,8-linked polymer of sialic acid, are encoded by the 17-kb kps gene cluster. We deleted neuC, a K1 gene implicated in sialic acid synthesis, from the chromosome of EV36, a K-12-K1 hybrid, by allelic exchange. Exogenously added sialic acid restored capsule expression to the deletion strain (DeltaneuC), confirming that NeuC is necessary for sialic acid synthesis. The deduced amino acid sequence of NeuC showed similarities to those of UDP-N-acetylglucosamine (GlcNAc) 2-epimerases from both prokaryotes and eukaryotes. The NeuC homologue from serotype III Streptococcus agalactiae complements DeltaneuC. We cloned the neuC gene into an intein expression vector to facilitate purification. We demonstrated by paper chromatography that the purified neuC gene product catalyzed the formation of [2-(14)C]acetamidoglucal and [N-(14)C]acetylmannosamine (ManNAc) from UDP-[(14)C]GlcNAc. The formation of reaction intermediate 2-acetamidoglucal with the concomitant release of UDP was confirmed by proton and phosphorus nuclear magnetic resonance spectroscopy. NeuC could not use GlcNAc as a substrate. These data suggest that neuC encodes an epimerase that catalyzes the formation of ManNAc from UDP-GlcNAc via a 2-acetamidoglucal intermediate. The unexpected release of the glucal intermediate and the extremely low rate of ManNAc formation likely were a result of the in vitro assay conditions, in which a key regulatory molecule or protein was absent.  相似文献   
986.
Growth differentiation factor 9 (GDF9) is an oocyte-expressed member of the transforming growth factor beta (TGF-beta) superfamily and is required for normal ovarian follicle development and female fertility. GDF9 acts as a paracrine factor and affects granulosa cell physiology. Only a few genes regulated by GDF9 are known. Our microarray analysis has identified gremlin as one of the genes up-regulated by GDF9 in cultures of granulosa cells. Gremlin is a known member of the DAN family of bone morphogenetic protein (BMP) antagonists, but its expression and function in the ovary are unknown. We have investigated the regulation of gremlin in mouse granulosa cells by GDF9 as well as other members of the TGF-beta superfamily. GDF9 and BMP4 induce gremlin, but TGF-beta does not. In addition, in cultures of granulosa cells, gremlin negatively regulates BMP4 signaling but not GDF9 activity. The expression of gremlin in the ovary was also examined by in situ hybridization. A distinct change in gremlin mRNA compartmentalization occurs during follicle development and ovulation, indicating a highly regulated expression pattern during folliculogenesis. We propose that gremlin modulates the cross-talk between GDF9 and BMP signaling that is necessary during follicle development because both ligands use components of the same signaling pathway.  相似文献   
987.
The TNF-related ligand, B cell-activating factor belonging to the TNF family (BAFF), is necessary for normal B cell development and survival, and specifically binds the receptors transmembrane activator and calcium-modulator and cyclophilin ligand interactor (TACI), B cell maturation Ag (BCMA), and BAFF-R. Similarities between mice completely lacking BAFF and A/WySnJ strain mice that express a naturally occurring mutant form of BAFF-R suggest that BAFF acts primarily through BAFF-R. However, the nearly full-length BAFF-R protein expressed by A/WySnJ mice makes unambiguous interpretation of receptor function in these animals impossible. Using homologous recombination we created mice completely lacking BAFF-R and compared them directly to A/WySnJ mice and to mice lacking BAFF. BAFF-R-null mice exhibit loss of mature B cells similar to that observed in BAFF(-/-) and A/WySnJ mice. Also, mice lacking both TACI and BCMA simultaneously exhibit no B cell loss, thus confirming that BAFF-R is the primary receptor for transmitting the BAFF-dependent B cell survival signal. However, while BAFF-R-null mice cannot carry out T cell-dependent Ab formation, they differ from BAFF-deficient mice in generating normal levels of Ab to at least some T cell-independent Ags. These studies clearly demonstrate that BAFF regulates Ab responses in vivo through receptors in addition to BAFF-R.  相似文献   
988.
Nitric oxide (NO) transduces most of its biological effects through activation of the heterodimeric enzyme, soluble guanylyl cyclase (sGC). Activation of sGC results in the production of cGMP from GTP. In this paper, we demonstrate a novel protein interaction between CCT (chaperonin containing t-complex polypeptide) subunit eta and the alpha1beta1 isoform of sGC. CCTeta was found to interact with the beta1 subunit of sGC via a yeast-two-hybrid screen. This interaction was then confirmed in vitro with a co-immunoprecipitation from mouse brain. The interaction between these two proteins was further supported by a co-localization of the proteins within rat brain. Using the yeast two-hybrid system, CCTeta was found to bind to the N-terminal portion of sGC. In vitro assays with purified CCTeta and Sf9 lysate expressing sGC resulted in a 30-50% inhibition of diethylamine diazeniumdiolate-NO-stimulated sGC activity. The same assays were then performed using BAY41-2272, an NO-independent allosteric sGC activator, and CCTeta had no effect on this activity. Furthermore, CCTeta had no effect on basal or sodium nitroprusside-stimulated alphabeta(Cys-105) sGC, a constitutively active mutant that only lacks the heme group. The N-terminal 94 amino acids of CCTeta seem to be critical for the mediation of this inhibition. Lastly, a 45% inhibition of sGC activity by CCTeta was seen in vivo in BE2 cells stably transfected with CCTeta and treated with sodium nitroprusside. These data suggest that CCTeta binds to sGC and, in cooperation with some other factor, inhibits its activity by modifying the binding of NO to the heme group or the subsequent conformational changes.  相似文献   
989.
Axonal damage is a major morphological correlate and cause of permanent neurological deficits in patients with multiple sclerosis (MS), a multifocal, inflammatory and demyelinating disease of the central nervous system. Hyperphosphorylation and pathological aggregation of microtubule-associated protein tau is a common feature of many neurodegenerative diseases with axonal degeneration including Alzheimer's disease. We have therefore analyzed tau phosphorylation, solubility and distribution in the brainstem of rats with experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Tau was hyperphosphorylated at several sites also phosphorylated in Alzheimer's disease and became partially detergent-insoluble in EAE brains. Morphological examination demonstrated accumulation of amorphous deposits of abnormally phosphorylated tau in the cell body and axons of neurons within demyelinating plaques. Hyperphosphorylation of tau was accompanied by up-regulation of p25, an activator of cyclin-dependent kinase 5. Phosphorylation of tau, activation of cdk5, and axonal pathology were significantly reduced when diseased rats were treated with prednisolone, a standard therapy of acute relapses in MS. Hyperphosphorylation of tau was not observed in a genetic or nutritional model of axonal degeneration or demyelination, suggesting that inflammation as detected in the brains of rats with EAE is the specific trigger of tau pathology. In summary, our data provide evidence that axonal damage in EAE and possibly MS is linked to tau pathology.  相似文献   
990.
Rodent incisors are covered by enamel only on their labial side. This asymmetric distribution of enamel is instrumental to making the cutting edge sharp. Enamel matrix is secreted by ameloblasts derived from dental epithelium. Here we show that overexpression of follistatin in the dental epithelium inhibits ameloblast differentiation in transgenic mouse incisors, whereas in follistatin knockout mice, ameloblasts differentiate ectopically on the lingual enamel-free surface. Consistent with this, in wild-type mice, follistatin was continuously expressed in the lingual dental epithelium but downregulated in the labial epithelium. Experiments on cultured tooth explants indicated that follistatin inhibits the ameloblast-inducing activity of BMP4 from the underlying mesenchymal odontoblasts and that follistatin expression is induced by activin from the surrounding dental follicle. Hence, ameloblast differentiation is regulated by antagonistic actions of BMP4 and activin A from two mesenchymal cell layers flanking the dental epithelium, and asymmetrically expressed follistatin regulates the labial-lingual patterning of enamel formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号