首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4029篇
  免费   257篇
  4286篇
  2023年   21篇
  2022年   50篇
  2021年   87篇
  2020年   56篇
  2019年   71篇
  2018年   106篇
  2017年   66篇
  2016年   130篇
  2015年   194篇
  2014年   220篇
  2013年   300篇
  2012年   343篇
  2011年   309篇
  2010年   200篇
  2009年   179篇
  2008年   286篇
  2007年   245篇
  2006年   248篇
  2005年   231篇
  2004年   184篇
  2003年   196篇
  2002年   161篇
  2001年   42篇
  2000年   31篇
  1999年   32篇
  1998年   33篇
  1997年   26篇
  1996年   26篇
  1995年   25篇
  1994年   17篇
  1993年   17篇
  1992年   27篇
  1991年   12篇
  1990年   11篇
  1989年   11篇
  1988年   7篇
  1987年   15篇
  1986年   11篇
  1985年   8篇
  1984年   3篇
  1983年   3篇
  1982年   4篇
  1981年   7篇
  1978年   3篇
  1975年   3篇
  1973年   5篇
  1972年   2篇
  1970年   8篇
  1969年   2篇
  1968年   2篇
排序方式: 共有4286条查询结果,搜索用时 10 毫秒
181.
In Pseudomonas aeruginosa quorum sensing (QS) activates the production of virulence factors, playing a critical role in pathogenesis. Multiple negative regulators modulate the timing and the extent of the QS response either in the pre-quorum or post-quorum phases of growth. This regulation likely increases P. aeruginosa phenotypic plasticity and population fitness, facilitating colonization of challenging environments such as higher organisms. Accordingly, in addition to the factors required for QS signals synthesis and response, also QS regulators have been proposed as targets for anti-virulence therapies. However, while it is known that P. aeruginosa mutants impaired in QS are attenuated in their pathogenic potential, the effect of mutations causing a dysregulated timing and/or magnitude of the QS response has been poorly investigated so far in animal models of infection. In order to investigate the impact of QS dysregulation on P. aeruginosa pathogenesis in a murine model of lung infection, the QteE and RsaL proteins have been selected as representatives of negative regulators controlling P. aeruginosa QS in the pre- and post-quorum periods, respectively. Results showed that the qteE mutation does not affect P. aeruginosa lethality and ability to establish chronic infection in mice, despite causing a premature QS response and enhanced virulence factors production in test tube cultures compared to the wild type. Conversely, the post-quorum dysregulation caused by the rsaL mutation hampers the establishment of P. aeruginosa chronic lung infection in mice without affecting the mortality rate. On the whole, this study contributes to a better understanding of the impact of QS regulation on P. aeruginosa phenotypic plasticity during the infection process. Possible fallouts of these findings in the anti-virulence therapy field are also discussed.  相似文献   
182.

Objective

To analyze hospitalization for lower extremity amputations (LEAs) and amputee rates in persons with and without diabetes in Italy.

Research Design and Methods

All patients with LEAs in the period 2001–2010 were identified analyzing the National Hospital Discharge Record database. For each year, amputee and hospitalization rates for LEAs were calculated either for persons with diabetes or without. Time trend for major and minor amputations were analysed.

Results

From 2001 to 2010 a mean annual number of 11,639 individuals underwent a lower extremity amputation: 58.6% had diabetes accounting for 60.7% of total hospitalizations. In 2010, the crude amputee rate for LEAs was 20.4 per 100,000 inhabitants: 247.2 for 100.000 persons with diabetes, and 8.6 for those without diabetes. Having diabetes was associated to an increased risk of amputation (Poisson estimated RR 10.9, 95%CI 9.4–12.8). Over the whole period, a progressive reduction of amputee rates was observed for major amputations either among persons with diabetes (−30.7%) or without diabetes (−12.5%), while the rates of minor amputations increased progressively (+22.4%) among people without diabetes and were nearly stable in people with diabetes (−4.6%). A greater number of minor amputations were performed among persons with than without diabetes: in 2010, the minor-to-major ratio among persons with diabetes (2.5) was more than twice than in those without diabetes (1.0).

Conclusions

The nationwide analyses confirm a progressive reduction of hospitalization and amputee rates for major LEAs, suggesting an earlier and more diffuse approach aimed at limb salvage.  相似文献   
183.
Recent reports demonstrate that PKR is constitutively active in a variety of tumors and is required for tumor maintenance and growth. Here we report acute leukemia cell lines contain elevated levels of p‐T451 PKR and PKR activity as compared to normal controls. Inhibition of PKR with a specific inhibitor, as well as overexpression of a dominant‐negative PKR, inhibited cell proliferation and induced cell death. Interestingly, PKR inhibition using the specific inhibitor resulted in a time‐dependent augmentation of AKT S473 and GSK‐3α S21 phosphorylation, which was confirmed in patient samples. Increased phosphorylation of AKT and GSK‐3α was not dependent on PI3K activity. PKR inhibition augmented levels of p‐S473 AKT and p‐S21/9 GSK‐3α/β in the presence of the PI3K inhibitor, LY294002, but was unable to augment GSK‐3α or β phosphorylation in the presence of the AKT inhibitor, A443654. Pre‐treatment with the PKR inhibitor blocked the ability of A443654 and LY294002 to promote phosphorylation of eIF2α, indicating the mechanism leading to AKT phosphorylation and activation did not require eIF2α phosphorylation. The effects of PKR inhibition on AKT and GSK‐3 phosphorylation were found to be, in part, PP2A‐dependent. These data indicate that, in acute leukemia cell lines, constitutive basal activity of PKR is required for leukemic cell homeostasis and growth and functions as a negative regulator of AKT, thereby increasing the pool of potentially active GSK‐3. J. Cell. Physiol. 221: 232–241, 2009. © 2009 Wiley‐Liss, Inc  相似文献   
184.
The medical device-related infections are frequently a consequence of Staphylococcus biofilm, a lifestyle enhancing bacterial resistance to antibiotics. Antibiotic susceptibility tests are usually performed on planktonic forms of clinical isolates. Some methods have been developed to perform antibiotic susceptibility tests on biofilm. However, none of them counts bacterial inoculum. As antibiotic susceptibility is related to bacterial inoculum, the test results could be mistaken. Here, a new method, BioTimer Assay (BTA), able to count bacteria in biofilm without any manipulation of samples, is presented. Moreover, the BTA method is applied to analyze antibiotic susceptibility of six Staphylococcus strains in biofilm and to determine the number of viable bacteria in the presence of sub-inhibitory doses of four different antibiotics. To validate BTA, the new method was compared to reference methods both for counting and antibiotic susceptibility tests. A high agreement between BTA and reference methods is found on planktonic forms. Therefore, BTA was employed to count bacteria in biofilm and to analyze biofilm antibiotic susceptibility. Results confirm the high resistance to antibiotics of Staphylococcus biofilm. Moreover, BTA counts the number of viable bacteria in the presence of sub-inhibitory doses of antibiotics. The results show that the number of viable bacteria depends on sub-inhibitory doses, age of biofilm and type of antibiotic. In particular, differently to gentamicin and ampicillin, sub-inhibitory doses of ofloxacin and azithromycin reduce the number of viable bacteria at lower extent in young than in old biofilm. In conclusion, BTA is a reliable, rapid, easy-to-perform, and versatile method, and it can be considered a useful tool to analyze antibiotic susceptibility of Staphylococcus spp. in biofilm.  相似文献   
185.
The extracellular domain of the receptor tyrosine kinase Tie2/TEK (exTEK) has been used as an angiopoietin decoy to study the role of angiopoietins in the tumor–host interactions, using a syngeneic model of experimental metastases and subcutaneous tumor. Soluble exTEK secreted by transfected tumor cells inhibited HUVECs from forming tubes in Matrigel. ExTEK-transfected C26 colon carcinoma and TS/A mammary tumor cells displayed reduced growth rate when injected subcutaneously, and reduced ability to form experimental metastases when injected intravenously. Immunohistochemical analysis of tumors and metastases showed increased leukocytes infiltration and signs of inflammation in exTEK-secreting compared to parental tumor, as well as impairment in neo-vessel growth and organization. However, while neoangiogenesis eventually rescued in the subcutis, it failed to organize in the experimental metastases of exTEK-secreting tumor, contributing to the hampering of metastatic growth and to increased mice survival. The reactive infiltrate of C26TEK contained a different percentage of leukocytes and was responsible for the tumor inhibition. In fact, leukopenia induced by -irradiation of recipient mice or injection into interferon gamma (IFN-) gene knockout (GKO) mice resulted in reduced mouse survival and an increased number of lung metastases. On the other hand, interleukin (IL)-12 treatment prolonged the survival of mice bearing subcutaneous C26TEK but not of those bearing lung metastases, suggesting that IL-12 could exert further antiangiogenic effects at the site where the tumor can restore neoangiogenesis. These results show in vivo that reduced angiopoietin availability at the tumor site induces a local inflammatory response and impairment of neoangiogenesis which act synergistically to limit tumor growth and metastasis.Abbreviations AEC amino-ethylcarbazole - ELISA enzyme-linked immunosorbent assay - HRP horseradish peroxidase - HUVEC human umbilical vascular endothelial cell - i.v. intravenous - s.c. subcutaneous - TBS Tris-HCl buffered solution  相似文献   
186.
Summary Dehydrocholic acid (3,7,12-trioxo-5-cholanic acid) (0.5% concentration) was completely and selectively reduced to 12-ketoursodeoxycholic acid (3, 7-dihydroxy-12-oxo- 5-cholanic acid) in a membrane reactor by means of 3-hydroxysteroid dehydrogenase and 7-hydroxysteroid dehydrogenase. Coenzyme regeneration was carried out with the glucose-glucose dehydrogenase system.  相似文献   
187.

Background

Attempts over the last three decades to reconstruct the phylogenetic history of the Anopheles gambiae species complex have been important for developing better strategies to control malaria transmission.

Methodology

We used fingerprint genotyping data from 414 field-collected female mosquitoes at 42 microsatellite loci to infer the evolutionary relationships of four species in the A. gambiae complex, the two major malaria vectors A. gambiae sensu stricto (A. gambiae s.s.) and A. arabiensis, as well as two minor vectors, A. merus and A. melas.

Principal Findings

We identify six taxonomic units, including a clear separation of West and East Africa A. gambiae s.s. S molecular forms. We show that the phylogenetic relationships vary widely between different genomic regions, thus demonstrating the mosaic nature of the genome of these species. The two major malaria vectors are closely related and closer to A. merus than to A. melas at the genome-wide level, which is also true if only autosomes are considered. However, within the Xag inversion region of the X chromosome, the M and two S molecular forms are most similar to A. merus. Near the X centromere, outside the Xag region, the two S forms are highly dissimilar to the other taxa. Furthermore, our data suggest that the centromeric region of chromosome 3 is a strong discriminator between the major and minor malaria vectors.

Conclusions

Although further studies are needed to elucidate the basis of the phylogenetic variation among the different regions of the genome, the preponderance of sympatric admixtures among taxa strongly favor introgression of different genomic regions between species, rather than lineage sorting of ancestral polymorphism, as a possible mechanism.  相似文献   
188.
189.
Starting from alpha- and beta-lapachones, in this work we compared the biological and theoretical profile of several oxyran derivatives of lapachone as potential trypanocidal agents. Our biological results showed that the oxyrans tested act as trypanocidal agents against Trypanosoma cruzi with minimal cytotoxicity in the VERO cell line compared to naphthoquinones. The oxyran derivative of alpha-lapachone (7a) showed to be one of the most potent compounds. In our molecular modeling study, we analyzed the C-ring moiety and the redox center of beta-lapachone molecule as the moieties responsible for the trypanocidal and cytotoxic effects on mammalian cell line. The computational methods used to delineate the structural requirements for the trypanocidal profile pointed out that the transposition of the C-ring moiety of beta-lapachone, combined with its oxyran ring, introduced important molecular requirements for trypanocidal activity in the HOMO energy, HOMO orbital coefficient, LUMO density, electrostatic potential map, dipole moment vector, and calculated logP (clogP) parameter. This study could lead to the development of new antichagasic medicines based on alpha-lapachone analogs.  相似文献   
190.
The susceptibility or resistance to 26 antimicrobial agents was determined for 64 strains of Listeria monocytogenes and 102 strains of L. innocua isolated from Italian meat products. Some strains of L. monocytogenes were found to be resistant to tetracycline, erythromycin, co-trimoxazole and clindamycin. No plasmids were found in any L. monocytogenes strain. Five strains of L. innocua contained a 7.9 kbp plasmid, but these isolates were not resistant to any antibiotic in common and treatment with curing agents could not eliminate resistance to antibiotics. These results suggest that antibiotic resistance was not likely to be plasmid mediated in our strains.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号