首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18277篇
  免费   1297篇
  国内免费   3篇
  2023年   155篇
  2022年   269篇
  2021年   598篇
  2020年   443篇
  2019年   553篇
  2018年   655篇
  2017年   568篇
  2016年   814篇
  2015年   1142篇
  2014年   1164篇
  2013年   1385篇
  2012年   1577篇
  2011年   1442篇
  2010年   856篇
  2009年   755篇
  2008年   928篇
  2007年   881篇
  2006年   779篇
  2005年   691篇
  2004年   618篇
  2003年   542篇
  2002年   518篇
  2001年   253篇
  2000年   216篇
  1999年   203篇
  1998年   102篇
  1997年   89篇
  1996年   81篇
  1995年   58篇
  1994年   71篇
  1993年   63篇
  1992年   115篇
  1991年   78篇
  1990年   64篇
  1989年   73篇
  1988年   63篇
  1987年   76篇
  1986年   52篇
  1985年   54篇
  1984年   60篇
  1983年   29篇
  1982年   34篇
  1981年   31篇
  1980年   27篇
  1979年   41篇
  1977年   25篇
  1976年   25篇
  1975年   30篇
  1974年   25篇
  1973年   42篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Intracellular protein inclusions in Alzheimer's disease and progressive supranuclear palsy contain UBB+1, a variant ubiquitin. UBB+1 is able block the 26S proteasome in cell lines. Proteasome inhibition by drug action has previously been shown to induce a heat-shock response and render protection against stress. We investigated UBB+1 by developing a stable, conditional expression model in SH-SY5Y human neuroblastoma cells. Induction of UBB+1 expression caused proteasome inhibition as was confirmed by reduced ability to process misfolded canavanyl proteins, accumulation of GFPu, a proteasome substrate, and reduced cleavage of a fluorogenic substrate. We show that expression of UBB+1 induces expression of heat-shock proteins. This priming of the chaperone system in these cells promotes a subsequent resistance to tert-butyl hydroperoxide-mediated oxidative stress. We conclude that although UBB+1-expressing cells have a compromised ubiquitin-proteasome system, they are protected against oxidative stress conditions.  相似文献   
992.
In the present work we investigated the effect of selective stimulation of non-desensitizing alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors in the intracellular processes leading to hippocampal neuronal death and production of reactive oxygen species (ROS). Activation of AMPA receptors in the presence of cyclothiazide (CYZ), a blocker of AMPA receptor desensitization, resulted in the death of approximately 25% of neurones, which was prevented by 2,3-dihydroxy-6-nitro-7-sulphamoyl-benzo(f)quinoxaline (NBQX), an AMPA-preferring receptor antagonist. (+)-5-Methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK-801) protected the neurones from necrotic death induced by AMPA or NMDA receptor activation. Neurodegeneration caused by selective activation of non-desensitizing AMPA receptors, in the presence of AMPA, CYZ and MK-801, significantly decreased the number of Co2+-positive neurones, used as a cytochemical marker of Ca2+-permeable AMPA receptors, but maintained intracellular ATP/ADP. The AMPA-mediated apoptotic cell death involved mitochondrial cytochrome c release and the activation of caspases-1 and -3, which was prevented by NBQX. Interestingly, although selective activation of AMPA receptors was not associated with production of intracellular peroxides, a moderate increase in superoxide production was observed upon exposure to antimycin A (AA). Furthermore, increased activity of Mn- superoxide dismutase (SOD) was observed on selective activation of non-desensitizing AMPA receptors. Taken together, these data make important contributions to the elucidation of the downstream pathways activated in AMPA receptor-mediated excitotoxicity in cultured rat hippocampal neurones.  相似文献   
993.
Current methods for the serodiagnosis of sheep fascioliasis show suboptimal sensitivity, specificity, or both. With the aim of developing an improved method, we fractionated native Fasciola hepatica excretory-secretory antigens (ESAs) by size-exclusion FPLC (fast protein liquid chromatography) on a Superdex 75 HR 10/30 column and then tested the serodiagnostic value of the antigens contained in each one of the 4 peaks obtained (peaks I-IV). Serodiagnostic value was assessed using sera from sheep naturally infected with F. hepatica (group A); sera from the individuals of a fluke-free herd (most of which also had other intestinal nematodes, lung nematodes, Moniezia spp., and/or Cysticercus tenuicollis) sera from a fluke-free herd (group B); sera from lambs experimentally infected with 10-40 F. hepatica metacercariae (group C); and sera from uninfected control lambs (group D). Enzyme-linked immunosorbent assay (ELISA) with peak I or II as target antigens (and to a lesser extent with peak III as target) showed reactivity with negative sera, so that it was not possible to establish cutoff values discriminating infected and uninfected animals. In contrast, when peak IV was used as target, a low cutoff value of 0.235 optical density units (mean + 4 SD) discriminated infected and uninfected animals, with 100% sensitivity and 100% specificity. ELISA with peak IV as a target identified infected animals (even animals that had received only 10 metacercariae) within 3-5 wk of infection and subsequently throughout the rest of the 14-wk monitoring period. In Western blotting analysis, again only the antigens contained in peak IV (range 7-40 kDa, under reducing conditions) were specific for diagnosis of infected animals. These results indicate that molecular sieving of F. hepatica ESAs by this procedure is a fast, simple, reproducible way of obtaining antigens useful for serodiagnosis of sheep fascioliasis.  相似文献   
994.
995.
996.
Previous studies indicated that the determinants of coenzyme specificity in ferredoxin-NADP+ reductase (FNR) from Anabaena are situated in the 2'-phosphate (2'-P) NADP+ binding region, and also suggested that other regions must undergo structural rearrangements of the protein backbone during coenzyme binding. Among the residues involved in such specificity could be those located in regions where interaction with the pyrophosphate group of the coenzyme takes place, namely loops 155-160 and 261-268 in Anabaena FNR. In order to learn more about the coenzyme specificity determinants, and to better define the structural basis of coenzyme binding, mutations in the pyrophosphate and 2'-P binding regions of FNR have been introduced. Modification of the pyrophosphate binding region, involving residues Thr-155, Ala-160, and Leu-263, indicates that this region is involved in determining coenzyme specificity and that selected alterations of these positions produce FNR enzymes that are able to bind NAD+. Thus, our results suggest that slightly different structural rearrangements of the backbone chain in the pyrophosphate binding region might determine FNR specificity for the coenzyme. Combined mutations at the 2'-P binding region, involving residues Ser-223, Arg-224, Arg-233, and Tyr-235, in combination with the residues mentioned above in the pyrophosphate binding region have also been carried out in an attempt to increase the FNR affinity for NAD+/H. However, in most cases the analyzed mutants lost the ability for NADP+/H binding and electron transfer, and no major improvements were observed with regard to the efficiency of the reactions with NAD+/H. Therefore, our results confirm that determinants for coenzyme specificity in FNR are also situated in the pyrophosphate binding region and not only in the 2'-P binding region. Such observations also suggest that other regions of the protein, yet to be identified, might also be involved in this process.  相似文献   
997.
Changes in 5'-AMP-activated protein kinase (AMPK) activity have recently been implicated in the control of insulin secretion by glucose (da Silva Xavier, G., Leclerc, I., Varadi, A., Tsuboi, T., Moule, S. K., and Rutter, G. A. (2003) Biochem. J. 371, 761-774). Here, we examine the possibility that activation of AMPK may regulate distal steps in insulin secretion, including vesicle movement and fusion with the plasma membrane. Vesicle dynamics were imaged in single pancreatic MIN6 beta-cells expressing lumen-targeted pH-insensitive yellow fluorescent protein, neuropeptide Y.Venus, or monomeric red fluorescent protein by total internal reflection fluorescence and Nipkow disc confocal microscopy. Overexpression of a truncated, constitutively active form of AMPK (AMPKalpha1, 1-312, T172D; AMPK CA), inhibited glucose-stimulated (30 versus 3.0 mM) vesicle movements, and decreased the number of vesicles docked or fusing at the plasma membrane, while having no effect on the kinetics of individual secretory events. Expression of the activated form of AMPK also prevented dispersal of the cortical actin network at high glucose concentrations. Monitored in permeabilized cells, where the effects of AMPK CA on glucose metabolism and ATP synthesis were bypassed, AMPK CA inhibited Ca2+ and ATP-induced insulin secretion, and decreased ATP-dependent vesicle movements. These findings suggest that components of the vesicle transport network, including vesicle-associated motor proteins, may be targets of AMPK in beta-cells, dephosphorylation of which is required for vesicle mobilization at elevated glucose concentrations.  相似文献   
998.
The 20 S proteasome core purified from Saccharomyces cerevisiae is inhibited by reduced glutathione (GSH), cysteine (Cys), or the GSH precursor gamma-glutamylcysteine. Chymotrypsin-like activity was more affected by GSH than trypsin-like activity, whereas the peptidylglutamyl-hydrolyzing activity (caspase-like) was not inhibited by GSH. Cys-sulfenic acid formation in the 20 S core was demonstrated by spectral characterization of the Cys-S(O)-4-nitrobenzo-2-oxa-1,3-diazole adduct, indicating that 20 S proteasome Cys residues might react with reduced sulfhydryls (GSH, Cys, and gamma-glutamylcysteine) through the oxidized Cys-sulfenic acid form. S-Glutahionylation of the 20 S core was demonstrated in vitro by GSH-biotin incorporation and by decreased alkylation with monobromobimane. Compounds such as N-ethylmaleimide (-S-sulfhydril H alkylating), dimedone (-SO sulfenic acid H reactant), or 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (either -SH or -SOH reactant) highly inhibited proteasomal chymotrypsin-like activity. In vivo experiments revealed that 20 S proteasome extracted from H(2)O(2)-treated cells showed decreased chymotrypsin-like activity accompanied by S-glutathionylation as demonstrated by GSH release from the 20 S core after reduction with NaBH(4). Moreover, cells pretreated with H(2)O(2) showed decreased reductive capacity assessed by determination of the GSH/oxidized glutathione ratio and increased protein carbonyl levels. The present results indicate that at the physiological level the yeast 20 S proteasome is regulated by its sulfhydryl content, thereby coupling intracellular redox signaling to proteasome-mediated proteolysis.  相似文献   
999.
The cardiac ryanodine receptor/calcium release channel (RyR2) on the sarcoplasmic reticulum (SR) comprises a macromolecular complex that includes a kinase and two phosphatases that are bound to the channel via targeting proteins. We previously found that the RyR2 is protein kinase A (PKA)-hyperphosphorylated in end-stage human heart failure. Because heart failure is a progressive disease that often evolves from hypertrophy, we analyzed the RyR2 macromolecular complex in several animal models of cardiomyopathy that lead to heart failure, including hypertrophy, and at different stages of disease progression. We now show that RyR2 is PKA-hyperphosphorylated in diverse models of heart failure and that the degree of RyR2 PKA phosphorylation correlates with the degree of cardiac dysfunction. Interestingly, we show that RyR2 PKA hyperphosphorylation can be lost during perfusion of isolated hearts due to the activity of the endogenous phosphatases in the RyR2 macromolecular complex. Moreover, infusion of isoproterenol resulted in PKA phosphorylation of RyR2 in rat, indicating that systemic catecholamines can activate phosphorylation of RyR2 in vivo. These studies extend our previous analyses of the RyR2 macromolecular complex, show that both the kinase and phosphatase activities in the macromolecular complex are regulated physiologically in vivo, and suggest that RyR2 PKA hyperphosphorylation is likely a general feature of heart failure.  相似文献   
1000.
Neuritogenesis, the first step of neuronal differentiation, takes place as nascent neurites bud from the immediate postmitotic neuronal soma. Little is known about the mechanisms underlying the dramatic morphological changes that characterize this event. Here, we show that RhoA activity plays a decisive role during neuritogenesis of cultured hippocampal neurons by recruiting and activating its specific kinase ROCK, which, in turn, complexes with profilin IIa. We establish that this previously uncharacterized brain-specific actin-binding protein controls neurite sprouting by modifying actin stability, a function regulated by ROCK-mediated phosphorylation. Furthermore, we determine that this novel cascade is switched on or off by physiological stimuli. We propose that RhoA/ROCK/PIIa-mediated regulation of actin stability, shown to be essential for neuritogenesis, may constitute a central mechanism throughout neuronal differentiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号