首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11549篇
  免费   799篇
  国内免费   6篇
  2023年   70篇
  2022年   161篇
  2021年   267篇
  2020年   223篇
  2019年   215篇
  2018年   368篇
  2017年   297篇
  2016年   466篇
  2015年   674篇
  2014年   663篇
  2013年   905篇
  2012年   992篇
  2011年   965篇
  2010年   554篇
  2009年   477篇
  2008年   657篇
  2007年   630篇
  2006年   558篇
  2005年   515篇
  2004年   463篇
  2003年   423篇
  2002年   392篇
  2001年   117篇
  2000年   104篇
  1999年   100篇
  1998年   94篇
  1997年   58篇
  1996年   60篇
  1995年   54篇
  1994年   60篇
  1993年   38篇
  1992年   57篇
  1991年   42篇
  1990年   50篇
  1989年   46篇
  1988年   33篇
  1987年   30篇
  1986年   25篇
  1985年   27篇
  1984年   54篇
  1983年   24篇
  1982年   30篇
  1981年   35篇
  1980年   32篇
  1979年   25篇
  1978年   17篇
  1977年   22篇
  1976年   15篇
  1974年   15篇
  1973年   22篇
排序方式: 共有10000条查询结果,搜索用时 281 毫秒
71.
Bal Ram Singh  Pill-Soon Song 《Planta》1990,181(2):263-267
Tryptophan (Trp) surface topography of the red- and far-red-absorbing forms of phytochrome (Pr, Pfr) ofAvena sativa L. has been investigated by analyzing quenching of the two components of Trp fluorescence decay, in order to understand the differences in the two forms at the molecular level. Stern-Volmer kinetic analysis of the quenching data for two cationic surface quenchers, Cs+ and Tl+, showed strong quenching of the short component of the Pr fluorescence (Stern-Volmer constants,K sv , 27.2 and 21.4 M−1, respectively) relative to that of Pfr fluorescenceK sv , 10.4 and 12.3 M−1, respectively). The long component of the Trp fluorescence was quenched differentially by Cs+ and Tl+, withK sv of 9.0 and 19.8 M−1, respectively, for the Pr fluorescence andK sv of 13.7 and 8.7 M−1, respectively, for the Pfr fluorescence. The results indicate that the phytochrome Trp residues with short fluorescence lifetime are more accessible to the cationic surface quenchers than those with long fluorescence lifetime. The data, taken together with our earlier study (Singh et al. 1988, Biochim, Biophys. Acta936, 395–405), indicate that most, if not all the ten Trp residues of phytochrome, are fluorescent and exist in distinct groups differing in their topography and microenvironment, and the peptide segment containing Trp-774 and Trp-778 within the 55-kilodalton C-terminal domain of phytochrome also undergoes a subtle alteration in its surface topography during Pr→Pfr phototransformation. This paper is dedicated to Professor Hans Mohr in commemoration of his 60th birthday  相似文献   
72.
The Wolf-Hirschhorn syndrome (WHS) is caused by a partial deletion in the short arm of chromosome 4 band 16.3 (4p16.3). A unique-sequence human DNA probe (39 kb) localized within this region has been used to search for sequence homology in the apes' equivalent chromosome 3 by FISH-technique. The WHS loci are conserved in higher primates at the expected position. Nevertheless, a control probe, which detects alphoid sequences of the pericentromeric region of humans, is diverged in chimpanzee, gorilla, and orangutan. The conservation of WHS loci and divergence of DNA alphoid sequences have further added to the controversy concerning human descent.  相似文献   
73.
CWH41 encodes a novel type II integral membrane N-glycoprotein located in the endoplasmic reticulum. Disruption of the CWH41 gene leads to a K1 killer toxin-resistant phenotype and a 50% reduction in the cell wall beta 1,6-glucan level. CWH41 also displays strong genetic interactions with KRE1 and KRE6, two genes known to be involved in the beta 1,6-glucan biosynthetic pathway. The cwh41 delta kre6 delta double mutant is nonviable; and the cwh41 delta kre1 delta double mutation results in strong synergistic defects, with a severely slow-growth phenotype, a 75% reduction in beta 1,6-glucan level, and the secretion of a cell wall glucomannoprotein, Cwp1p. These results provide strong genetic evidence indicating that Cwh41p plays a functional role, possibly as a new synthetic component, in the assembly of cell wall beta 1,6-glucan.  相似文献   
74.
Neurofilaments subunits (NF-H, NF-M, NF-L) and glial fibrillary acidic protein (GFAP) were investigated in the hippocampus of rats after distinct periods of reperfusion (1 to 15 days) following 20 min of transient global forebrain ischemia in the rat. In vitro [14Ca]leucine incorporation was not altered until 48 h after the ischemic insult, however concentration of intermediate filament subunits significantly decreased in this period. Three days after the insult, leucine incorporation significantly increased while the concentration NF-H, NF-M, and NF-L were still diminished after 15 days of reperfusion. In vitro incorporation of32P into NF-M and NF-L suffered immediately after ischemia, but returned to control values after two days of reperfusion. GFAP levels decreased immediately after ischemia but quickly recovered and significantly peaked from 7 to 10 days after the insult. These results suggest that transient ischemia followed by reperfusion causes proteolysis of intermediate filaments in the hippocampus, and that proteolysis could be facilitated by diminished phosphorylation levels of NF-M and NF-L.  相似文献   
75.
 Using recombinant DNA techniques, an Aspergillus nidulans multicopy transformant for the gene xlnB coding for the minor X24 xylanase has been constructed. When grown on glucose as sole carbon source this transformant secretes 114 U of xylanase (mg protein)-1. In this culture condition, X24 is the only xylanase secreted and the predominant protein in the culture filtrate. This strategy has been used to purify the X24 enzyme to homogeneity. The purified xylanase showed a single band on sodium dodecyl sulphate/ polyacrylamide gel electrophoresis with a molecular mass of 24 kDa and had an isoelectric point of approximately 3.5. The enzyme was a non-debranching endo-1,4-β-xylan xylanohydrolase highly specific for xylans and showed optimal activity at pH 5.5 and 52°C. The X24 xylanase had a Michaelis constant, K m, of 12.43 mg oat spelt xylan ml-1 and a V max of 1639 μmol min-1 (mg protein)-1. Received: 17 May 1995/Received last revision: 25 September 1995/Accepted: 29 September 1995  相似文献   
76.
Summary 1. Expression of the apamin-sensitive K+ channel (SK+) in rat skeletal muscle is neurally regulated. The regulatory effect of the nerve over the expression of some muscle ion channels has been attributed to the electrical activity triggered by the nerve and/or to a trophic effect of some molecules transported from the soma to the axonal endings. 2. SK+ channels apparently are involved in myotonic dystrophy (MD), therefore understanding the factors that regulate their expression may ultimately have important clinical relevance. 3. To establish if axoplasmic transport is involved in this process, we used two experimental approaches in adult rats: (a) Both sciatic nerves were severed, leaving a short or a long nerve stump attached to the anterior tibialis (AT). (b) Colchicine or vinblastine (VBL), two axonal transport blockers of different potencies, was applied on one leg to the sciatic nerve. To determine whether electrical activity affects the expression of SK+ channels, denervated AT were directly stimulated. The corresponding contralateral muscles were used as controls. 4. With these experimental conditions we measured (a) apamin binding to muscle membranes, (b) muscle contractile characteristics, and (c) electromyographic activity. 5. In the short- and long-nerve stump experiments, 5 days after denervation125I-apamin binding to AT membranes was 2.0 times higher in the short-stump side. This difference disappeared at longer times. The delayed expression of SK+ channels in the muscle left with a longer nerve stump can be attributed to the extra axoplasm contained in the longer stump, which maintains a normally repressive signal for a longer period of time. Ten to 15 days after application of axonal transport blockers we found that the muscle half-relaxation time increased in the drug-treated side and apamin partially reverted the prolonged relaxation. Myotonic-like discharges specifically blockable by apamin were always present in the drug-treated leg.125I-Apamin binding, which is undetectable in a microsomal preparation from hind leg control muscles, was increased in the drug-treated preparations. Apamin binding to denervated and stimulated AT muscles was lower than in the contralateral unstimulated muscles [3.3±1.0 vs 6.8±0.8 (n=4) fmol/mg protein]. 6. Our results demonstrate that electrical activity and axoplasmic transport are involved in the control of expression of SK+ in rat skeletal muscle. However, the increased expression of this channel induces myotonic-like characteristics that are reversed by apamin. This myotonic activity could be a model for MD.  相似文献   
77.
78.
The action of thyroid hormones on the expression of the mitochondrial ATP synthase -subunit gene (ATPsyn) is controversial. We detected a binding site for the thyroid hormone receptor between-366 and-380 in the human ATPsyn gene by DNase I footprint analysis and band-shift assays. However, expression vectors in which the chloramphenicol acetyl transferase (CAT) reporter gene is driven by the 5 upstream region of ATPsyn gene were unresponsive to T3 when transiently transfected to HepG2 or GH4C1 cells. CAT constructs driven by the rat phosphoenolpyruvate carboxykinase (PEPCK) or the growth hormone (GH) promoters were stimulated several fold by T3 in parallel experiments. It is proposed that the biological effects of thyroid hormones on the ATPsyn expression occur through indirect mechanisms.  相似文献   
79.
Puig  S.  Querol  A.  Ramón  D.  Pérez-Ortín  J. E. 《Biotechnology letters》1996,18(8):887-892
Summary Genes as POT1, HSP104 and SSA3, which are late expressed in laboratory culture conditions are expressed only during the first few days in microvinifications in wine yeast cells. This effect is probably due to the different growth conditions and leads to useless levels of enzyme activity for a reporter gene. However the ACT1 promoter, which is constitutively expressed in laboratory conditions, produces sufficient amounts of enzyme activity in late fermentation phases.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号