首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61562篇
  免费   3930篇
  国内免费   6篇
  65498篇
  2023年   451篇
  2022年   384篇
  2021年   824篇
  2020年   758篇
  2019年   742篇
  2018年   1940篇
  2017年   1806篇
  2016年   2357篇
  2015年   3098篇
  2014年   3049篇
  2013年   4113篇
  2012年   4943篇
  2011年   4410篇
  2010年   2738篇
  2009年   2081篇
  2008年   3414篇
  2007年   3215篇
  2006年   3022篇
  2005年   2576篇
  2004年   2503篇
  2003年   2237篇
  2002年   2056篇
  2001年   1389篇
  2000年   1376篇
  1999年   1052篇
  1998年   438篇
  1997年   315篇
  1996年   322篇
  1995年   304篇
  1994年   238篇
  1993年   221篇
  1992年   525篇
  1991年   446篇
  1990年   402篇
  1989年   397篇
  1988年   392篇
  1987年   349篇
  1986年   334篇
  1985年   334篇
  1984年   337篇
  1983年   231篇
  1982年   212篇
  1980年   171篇
  1979年   208篇
  1978年   202篇
  1975年   194篇
  1974年   212篇
  1973年   219篇
  1972年   181篇
  1969年   170篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
Inhalation of allergens produced by the American cockroach (Periplaneta americana) induces IgE Ab production and the development of asthma in genetically predisposed individuals. The cloning and expression in Escherichia coli of P. americana tropomyosin allergen have been achieved. The protein shares high homology with other arthropod tropomyosins (80% identity) but less homology with vertebrate ones (50% identity). The recombinant allergen was produced in E. coli as a nonfusion protein with a yield of 9 mg/l of bacterial culture. Both natural and recombinant tropomyosins were purified by isoelectric precipitation. P. americana allergen 1 (Per a 1) and Per a 7 (tropomyosin) are to date the only cross-reacting allergens found in cockroaches. ELISA and Western blot inhibition experiments, using natural and recombinant purified tropomyosins from shrimp and cockroach, showed that tropomyosin induced cross-reactivity of IgE from patients allergic to these allergens, suggesting that this molecule could be a common allergen among invertebrates.  相似文献   
972.
Three vagrant (Circinaria hispida, Circinaria gyrosa, and Circinaria sp. ‘paramerae’) and one crustose (semi‐vagrant, Circinaria sp. ‘oromediterranea’) lichens growing in very continental areas in the Iberian Peninsula were selected to study the phycobiont diversity. Mycobiont identification was checked using nrITS DNA barcoding: Circinaria sp. ‘oromediterranea’ and Circinaria sp. ‘paramerae’ formed a new clade. Phycobiont diversity was analyzed in 50 thalli of Circinaria spp. using nrITS DNA and LSU rDNA, with microalgae coexistence being found in all the species analyzed by Sanger sequencing. The survey of phycobiont diversity showed up to four different Trebouxia spp. as the primary phycobiont in 20 thalli of C. hispida, in comparison with the remaining Circinaria spp., where only one Trebouxia was the primary microalga. In lichen species showing coexistence, some complementary approaches are needed (454 pyrosequencing and/or ultrastructural analyses). Five specimens were selected for high‐throughput screening (HTS) analyses: 22 Trebouxia OTUs were detected, 10 of them not previously known. TEM analyses showed three different cell morphotypes (Trebouxia sp. OTU A12, OTU S51, and T. cretacea) whose ultrastructure is described here in detail for the first time. HTS revealed a different microalgae pool in each species studied, and we cannot assume a specific pattern between these pools and the ecological and/or morphological characteristics. The mechanisms involved in the selection of the primary phycobiont and the other microalgae by the mycobiont are unknown, and require complex experimental designs. The systematics of the genus Circinaria is not yet well resolved, and more analyses are needed to establish a precise delimitation of the species.  相似文献   
973.
Phosphorus (P) is one of the most important nutrients limiting agricultural production worldwide. In acid and alkaline soils, which make up over 70% of the world's arable land, P forms insoluble compounds that are not available for plant use. To reduce P deficiencies and ensure plant productivity, nearly 30 million tons of P fertilizer are applied every year. Up to 80% of the applied P fertilizer is lost because it becomes immobile and unavailable for plant uptake. Therefore, the development of novel plant varieties more efficient in the use of P represents the best alternative to reduce the use of P fertilizers and achieve a more sustainable agriculture. We show here that the ability to use insoluble P compounds can be significantly enhanced by engineering plants to produce more organic acids. Our results show that when compared to the controls, citrate-overproducing plants yield more leaf and fruit biomass when grown under P-limiting conditions and require less P fertilizer to achieve optimal growth.  相似文献   
974.
Both antibodies and T cells contribute to immunity against influenza virus infection. However, the generation of strong Th1 immunity is crucial for viral clearance. Interestingly, we found that human dendritic cells (DCs) infected with influenza A virus have lower allospecific Th1-cell stimulatory abilities than DCs activated by other stimuli, such as lipopolysaccharide and Newcastle disease virus infection. This weak stimulatory activity correlates with a suboptimal maturation of the DCs following infection with influenza A virus. We next investigated whether the influenza A virus NS1 protein could be responsible for the low levels of DC maturation after influenza virus infection. The NS1 protein is an important virulence factor associated with the suppression of innate immunity via the inhibition of type I interferon (IFN) production in infected cells. Using recombinant influenza and Newcastle disease viruses, with or without the NS1 gene from influenza virus, we found that the induction of a genetic program underlying DC maturation, migration, and T-cell stimulatory activity is specifically suppressed by the expression of the NS1 protein. Among the genes affected by NS1 are those coding for macrophage inflammatory protein 1beta, interleukin-12 p35 (IL-12 p35), IL-23 p19, RANTES, IL-8, IFN-alpha/beta, and CCR7. These results indicate that the influenza A virus NS1 protein is a bifunctional viral immunosuppressor which inhibits innate immunity by preventing type I IFN release and inhibits adaptive immunity by attenuating human DC maturation and the capacity of DCs to induce T-cell responses. Our observations also support the potential use of NS1 mutant influenza viruses as live attenuated influenza virus vaccines.  相似文献   
975.
Organic co-solvents can expand the use of enzymes in lignocellulose deconstruction through making substrates more soluble and thus more accessible. In choosing the most adequate co-solvent for feruloyl esterases, hydrolysis of methyl p-hydroxycinnamates by three pure enzymes (and a multi-enzyme preparation) was evaluated. Low concentrations of dimethylsulfoxide (DMSO) enhanced hydrolysis by two of the enzymes while at levels >20%, activity was reduced. DMSO also enhanced acetyl esterase-type activity of the enzymes. The co-solvent effect was different for each enzyme-substrate couple, indicating that other factors are also involved. Kinetic studies with a Talaromyces stipitatus feruloyl esterase showed low concentrations of dimethylsulfoxide enhanced the hydrolytic rate while Km also increased. Moreover, long-term incubation (96 h) of an Aspergillus niger feruloyl esterase in dimethylsulfoxide:water provided to the enzyme the ability to hydrolyze methyl p-coumarate, suggesting an active-site re-arrangement. Dimethylsulfoxide (10-30%) is proposed as an adequate co-solvent for feruloyl esterase treatment of water-insoluble substrates.  相似文献   
976.
Berdasco M  Esteller M 《Aging cell》2012,11(2):181-186
Aging is a complex process that results in compromised biological functions of the organism and increased susceptibility to disease and death. Although the molecular basis of aging is currently being investigated in many experimental contexts, there is no consensus theory to fully explain the aging process. Epigenetic factors, including DNA methylation, histone modifications, and microRNA expression, may play central roles in controlling changes in gene expression and genomic instability during aging. In this Hot Topic review, we first examine the mechanisms by which these epigenetic factors contribute to aging in diverse eukaryotic species including experimental models of yeasts, worms, and mammals. In a second section, we will emphasize in the mammalian epigenetic alterations and how they may affect human longevity by altering stem cell function and/or somatic cell decline. The field of aging epigenetics is ripe with potential, but is still in its infancy, as new layers of complexity are emerging in the epigenetic network. As an example, we are only beginning to understand the relevance of non-coding genome to organism aging or the existence of an epigenetic memory with transgenerational inheritance. Addressing these topics will be fundamental for exploiting epigenetics phenomena as markers of aging-related diseases or as therapeutic targets.  相似文献   
977.
Seed bank versus seed rain in the regeneration of a tropical pioneer tree   总被引:12,自引:0,他引:12  
Summary We used the tropical pioneer tree, Cecropia obtusifolia to evaluate the relative importance of different sources of seeds in the regeneration of species that depend on ephemeral sites. We studied seed production in a population established in a 5 ha plot, and dispersal, dormancy and seed predation in two recent treefall gaps (<1 year-old), two building or successional forest patches (10–15 since disturbed), and two mature forest patches (>35 years since disturbed) for a one year period at Los Tuxtlas (Mexico). Flowers and fruits were counted at monthly intervals. Annual fecundity per tree ranged from 1.4×104 to 1.4×107 seeds. Seeds were continuously available on the trees and on the ground. Average annual seed rain per m2 (as measured by 0.5×0.5 m seed traps) varied from 184 to 1925 among the six sites. Distance to nearest seed source and patch type explained more than 60% of the seed rain variation among sites. Soil seed density, estimated by counting seeds from ten samples (78.5 cm2×10 cm deep) collected from each site in October and January, ranged among the six sites from 269 to 4485 seeds per m2 in January and from 204 to 5073 in October. Soil seed viabilities were much lower (17.1% in October and 5.1% in January) than those of rain seeds (48.26%). Annual survivorships of 2.2% were estimated for seeds artificially sown on the soil surface of a gap and a mature patch, and 3.75% in a building patch. In two other experiments seed removal rates ranged from 27% to 98% in 4 days. Removal rates were significantly higher in gap and mature patches than in building patches. Ants (Paratrechina vividula) and grasshopper nymphs (Hygronemobius. sp.) were the main predators. We draw three main conclusions from our data: (1) Pathogens and predators determine low survivorship of C. obtusifolia's seeds in the soil and a rapid turnover rate (1.07 to 1.02 years) of its seed bank; (2) a continuous and copious seed production and an abundant and extensive seed rain replenish the soil seed pool in patches with different disturbance ages at least up to 86 m from nearest source; (3) more than 90% of the seeds contributing to C. obtusifolia seedling recruitment in gaps are less than one year-old. We discuss our results in the context of previous similar studies for tropical forests.  相似文献   
978.
979.
Changes in plant community composition induced by vertebrate grazers have been found to either accelerate or slow C and nutrient cycling in soil. This variation may reflect the differential effects of grazing-promoted (G+) plant species on overall litter quality and decomposition processes. Further, site conditions associated with prior grazing history are expected to influence litter decay and nutrient turnover. We studied how grazing-induced changes in plant life forms and species identity modified the quality of litter inputs to soil, decomposition rate and nutrient release in a flooding Pampa grassland, Argentina. Litter from G+ forbs and grasses (two species each) and grazing-reduced (G−) grasses (two species) was incubated in long-term grazed and ungrazed sites. G+ species, overall, showed higher rates of decomposition and N and P release from litter. However, this pattern was primarily driven by the low-growing, high litter-quality forbs included among G+ species. Forbs decomposed and released nutrients faster than either G+ or G− grasses. While no consistent differences between G+ and G− grasses were observed, patterns of grass litter decay and nutrient release corresponded with interspecific differences in phenology and photosynthetic pathway. Litter decomposition, N release and soil N availability were higher in the grazed site, irrespective of species litter type. Our results contradict the notion that grazing, by reducing more palatable species and promoting less palatable ones, should decrease nutrient cycling from litter. Plant tissue quality and palatability may not unequivocally link patterns of grazing resistance and litter decomposability within a community, especially where grazing causes major shifts in life form composition. Thus, plant functional groups defined by species’ “responses” to grazing may only partially overlap with functional groups based on species “effects” on C and nutrient cycling.  相似文献   
980.
Plant cyclotides: an unusual class of defense compounds   总被引:2,自引:0,他引:2  
Pelegrini PB  Quirino BF  Franco OL 《Peptides》2007,28(7):1475-1481
Plant cyclotides are unusual peptides with low molecular masses and a three-dimensional structure characterized by the presence of a cyclic fold. Synthetic peptides can adopt this circular conformation, but it is not a common feature for most members of other peptide groups. Cyclotides present a wide range of functions, such as the ability to induce stronger contractions during childbirth and anti-tumor activity. Additionally, some cyclotides present anti-viral, insecticidal or proteinase inhibitory activity. In this paper, we describe the structural and functional characteristics of plant cyclotides, their most conserved features and the development of these peptides for human health and biotechnological applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号