首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   257篇
  免费   30篇
  2022年   2篇
  2021年   6篇
  2020年   2篇
  2019年   3篇
  2018年   2篇
  2016年   4篇
  2015年   6篇
  2014年   10篇
  2013年   14篇
  2012年   12篇
  2011年   13篇
  2010年   7篇
  2009年   16篇
  2008年   13篇
  2007年   7篇
  2006年   11篇
  2005年   12篇
  2004年   8篇
  2003年   14篇
  2002年   8篇
  2001年   4篇
  2000年   6篇
  1999年   8篇
  1998年   3篇
  1996年   2篇
  1992年   4篇
  1991年   3篇
  1990年   5篇
  1989年   2篇
  1988年   3篇
  1987年   4篇
  1985年   6篇
  1984年   7篇
  1982年   3篇
  1981年   4篇
  1980年   4篇
  1979年   4篇
  1978年   2篇
  1977年   3篇
  1976年   3篇
  1974年   3篇
  1971年   2篇
  1970年   3篇
  1969年   7篇
  1953年   1篇
  1952年   2篇
  1948年   1篇
  1945年   1篇
  1942年   1篇
  1923年   1篇
排序方式: 共有287条查询结果,搜索用时 62 毫秒
41.
Spatial and temporal modelling of parasite transmission and risk assessment require relevant spatial information at appropriate spatial and temporal scales. There is now a large literature that demonstrates the utility of satellite remote sensing and spatial modelling within geographical information systems (GIS) and firmly establishes these technologies as the key tools for spatial epidemiology. This review outlines the strength of satellite remotely sensed data for spatial mapping of landscape characteristics in relation to disease reservoirs, host distributions and human disease. It is suggested that current satellite technology can fulfill the spatial mapping needs of disease transmission and risk modelling, but that temporal resolution, which is a function of the satellite data acquisition characteristics, may be a limitating factor for applications requiring information about landscape or ecosystem dynamics. The potential of the Modis sensor for spatial epidemiology is illustrated with reference to mapping spatial and temporal vegetation dynamics and small mammal parasite hosts on the Tibetan plateau. Future research directions and priorities for landscape epidemiology are considered.  相似文献   
42.
43.
44.
The self-assembly of hybrid diblock copolymers composed of poly(HPMA) and beta-sheet peptide P11 (CH(3)CO-QQRFQWQFEQQ-NH(2)) blocks was investigated. Copolymers were synthesized via thiol-maleimide coupling reaction, by conjugation of semitelechelic poly(HPMA)-SH with maleimide-modified beta-sheet peptide. As expected, CD and CR binding studies showed that the peptide block imposed its beta-sheet structural arrangement on the structure of diblock copolymers. TEM and AFM proved that peptide and these copolymers had the ability to self-assemble into fibrils.  相似文献   
45.

Background  

Parathyroid hormone (PTH) and PTH-related peptide (PTHrP) belong to a family of endocrine factors that share a highly conserved N-terminal region (amino acids 1-34) and play key roles in calcium homeostasis, bone formation and skeletal development. Recently, PTH-like peptide (PTH-L) was identified in teleost fish raising questions about the evolution of these proteins. Although PTH and PTHrP have been intensively studied in mammals their function in other vertebrates is poorly documented. Amphibians and birds occupy unique phylogenetic positions, the former at the transition of aquatic to terrestrial life and the latter at the transition to homeothermy. Moreover, both organisms have characteristics indicative of a complex system in calcium regulation. This study investigated PTH family evolution in vertebrates with special emphasis on Xenopus and chicken.  相似文献   
46.
The pathophysiology of venous dermal abnormality in chronic venous ulcers is reflective of a complex interplay that involves sustained venous hypertension, inflammation, changes in the microcirculation, cytokine and matrix metalloproteinase activation, and altered cellular function. Red blood cells and macromolecules extravasate into the interstitium and activate endothelial cells. Endothelial expression of specific adhesion molecules recruits leukocytes and causes diapedesis of these cells into the dermal microvasculature, promoting an inflammatory response with activation of cytokines and proteinases. Altered cell function enhances a state of vulnerability in the surrounding tissues, initiating specific changes associated with venous disease. Ultimately, the persistent inflammatory-proteinase activity leads to advanced chronic venous insufficiency and ulcer formation. The mainstay of therapy in venous ulcer abnormality is correction of the underlying venous hypertension through compression therapy and/or surgery. Understanding the science involved in the pathophysiology of venous ulcer formation has led to the development of adjunctive treatment directed at the dysregulated molecular pathways. Randomized clinical trials are critical for determining the most effective evidence-based treatments for venous ulcer, and this review discusses important trials that have had a significant impact on venous ulcer healing. In addition, the authors have included subsections referred to as "Translational Implications for Therapy" in the basic science sections of the review to help bridge the basic science knowledge with clinical applications that may help to modulate the molecular abnormalities in the pathophysiologic cascade leading to venous ulcers.  相似文献   
47.
SmgGDS is an atypical guanine nucleotide exchange factor (GEF) that promotes both cell proliferation and migration and is up-regulated in several types of cancer. SmgGDS has been previously shown to activate a wide variety of small GTPases, including the Ras family members Rap1a, Rap1b, and K-Ras, as well as the Rho family members Cdc42, Rac1, Rac2, RhoA, and RhoB. In contrast, here we show that SmgGDS exclusively activates RhoA and RhoC among a large panel of purified GTPases. Consistent with the well known properties of GEFs, this activation is catalytic, and SmgGDS preferentially binds to nucleotide-depleted RhoA relative to either GDP- or GTPγS-bound forms. However, mutational analyses indicate that SmgGDS utilizes a distinct exchange mechanism compared with canonical GEFs and in contrast to known GEFs requires RhoA to retain a polybasic region for activation. A homology model of SmgGDS highlights an electronegative surface patch and a highly conserved binding groove. Mutation of either area ablates the ability of SmgGDS to activate RhoA. Finally, the in vitro specificity of SmgGDS for RhoA and RhoC is retained in cells. Together, these results indicate that SmgGDS is a bona fide GEF that specifically activates RhoA and RhoC through a unique mechanism not used by other Rho family exchange factors.  相似文献   
48.
49.
50.
K Pinter  S B Marston 《FEBS letters》1992,305(3):192-196
Caldesmon was phosphorylated up to 1.2 molPi/mol using a partially purified endogenous kinase fraction. The phosphorylation site was within the C-terminal 99 amino acids. We were also able to phosphorylate caldesmon incorporated into native and synthetic smooth muscle thin filaments. Phosphorylation did not alter caldesmon binding to actin or inhibition of actomyosin ATPase. It also did not change Ca2+ sensitivity in native thin filaments. Phosphorylated caldesmon bound to myosin less than unphosphorylated caldesmon, especially when the myosin was also not phosphorylated. This work did not support the hypothesis that caldesmon function is modulated by phosphorylation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号