首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   163篇
  免费   13篇
  2022年   1篇
  2017年   2篇
  2016年   2篇
  2015年   3篇
  2014年   3篇
  2013年   12篇
  2012年   8篇
  2011年   5篇
  2010年   5篇
  2008年   4篇
  2007年   3篇
  2006年   3篇
  2005年   7篇
  2004年   3篇
  2003年   3篇
  2002年   3篇
  2001年   3篇
  1999年   1篇
  1998年   4篇
  1997年   3篇
  1996年   11篇
  1995年   9篇
  1994年   11篇
  1993年   9篇
  1992年   8篇
  1991年   11篇
  1990年   5篇
  1989年   3篇
  1988年   1篇
  1987年   5篇
  1986年   3篇
  1985年   3篇
  1984年   3篇
  1983年   2篇
  1981年   5篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1975年   1篇
  1974年   2篇
  1966年   1篇
排序方式: 共有176条查询结果,搜索用时 15 毫秒
81.
The siderophore rhizoferrin, produced by the fungus Rhizopus arrhizus, was previously found to be as an efficient Fe source as Fe-ethylenediamine-di(o-hydroxphenylacetic acid) to strategy I plants. The role of this microbial siderophore in Fe uptake by strategy II plants is the focus of this research. Fe-rhizoferrin was found to be an efficient Fe source for barley (Hordeum vulgare L.) and corn (Zea mays L.). The mechanisms by which these Gramineae utilize Fe from Fe-rhizoferrin and from other chelators were studied. Fe uptake from 59Fe-rhizoferrin, 59Fe-ferrioxamine B, 59Fe-ethylenediaminetetraacetic acid, and 59Fe-2[prime]-deoxymugineic acid by barley plants grown in nutrient solution at pH 6.0 was examined during periods of high (morning) and low (evening) phytosiderophore release. Uptake and translocation rates from Fe chelates paralleled the diurnal rhythm of phytosiderophore release. In corn, however, similar uptake and translocation rates were observed both in the morning and in the evening. A constant rate of the phytosiderophore's release during 14 h of light was found in the corn cv Alice. The results presented support the hypothesis that Fe from Fe-rhizoferrin is taken up by strategy II plants via an indirect mechanism that involves ligand exchange between the ferrated microbial siderophore and phytosiderophores, which are then taken up by the plant. This hypothesis was verified by in vitro ligand-exchange experiments.  相似文献   
82.
The solution conformation of a 21-residue vasoconstrictor peptide endothelin-1 (ET-1) in water-ethylene glycol has been determined by two-dimensional 1H-NMR spectroscopy and constrained molecular dynamics simulations. The N-terminus (residues 1-4) appears to undergo conformational averaging and no single structure consistent with the NMR constraints could be found for this region. Residues 5-8 form a turn, and residues 9-16 exist in a helical conformation. A flexible 'hinge' between residues 8-9 allows various orientations of the turn relative to the helix. Another 'hinge' at residue 17 connects the extended C-terminus to the bicyclic core region (residues 1-15). Residues important for binding and biological activity form a contiguous surface on one side of the helix, with the two disulfides extending from the other side of the helix.  相似文献   
83.
Iron uptake from ferrated (59Fe) pseudobactin (PSB), a Pseudomonas putida siderophore, by various plant species was studied in nutrient solution culture under short term (10 h) and long term (3 weeks) conditions. In the short term experiments, 59Fe uptake rate from 59FePSB by dicots (peanuts, cotton and sunflower) was relatively low when compared with 59Fe uptake rate from 59FeEDDHA. Iron uptake rate from 59FePSB was pH and concentration dependent, as was the Fe uptake rate from 59FeEDDHA. The rate was about 10 times lower than that of Fe uptake from the synthetic chelate. Results were similar for long term experiments.Monocots (sorghum) in short term experiments exhibited significantly higher uptake rate of Fe from FePSB than from FeEDDHA. In long term experiments, FePSB was less efficient than FeEDDHA as an Fe source for sorghum at pH 6, but the same levels of leaf chlorophyll concentration were obtained at pH 7.3.Fe uptake rates by dicots from the siderophore and FeEDDHA were found to correlate with Fe reduction rates and reduction potentials (E0) of both chelates. Therefore, it is suggested that the reduction mechanism governs the Fe uptake process from PSB by dicots. Further studies will be conducted to determine the role of pH in Fe aquisition from PSB by monocots.  相似文献   
84.
One-year-old apple cuttings (Malus pumila var.domestica cv. M26) were grown for 6 months in pot culture with and without inoculum of the VA-mycorrhizal fungus (VAMF)Glomus macrocarpum in soil from a long-term fertilizer field experiment with different P availability (20, 210, and 280 mg CAL-extractable P kg−1). The indigenous VAMF propagule density was reduced by 0.5 Mrad X-irradiation. At harvest, non-inoculated and inoculated plants had similar proportions of root length bearing vesicles. Net dry weight of tree cuttings was significantly increased by inoculation only at 20 mg P kg−1 (+62%). Increasing P availability from 210 to 280 mg P kg−1 led to a 4-week depression of shoot elongation rate only in the inoculated plants. Uptake of P was significantly enhanced by inoculation at 20 and 210 mg P kg−1 (+64 and +12%, respectively). On average, inoculated plants had significantly higher concentrations of Zn in leaves and in roots (+16 and +14%, respectively) and of copper in stems and in roots (+13 and +126%, respectively). Proportion of vesicle bearing root length was significantly correlated with root caloric content. A lipid content of 0.9–4.5% in the root dry matter was attributed to the presence of vesicles corresponding to 1.6–8.2% of total root caloric content. As the control plants were also infected, the beneficial effect of VA-mycorrhiza on nutrient uptake and growth of apple cuttings was underestimated at all P levels. Furthermore, VAM-potential at the lowest P level was not fully exploited as onset of infection was most certainly delayed because of a decreased photosynthetic rate due to P deficiency. Energy drain by VAMF-infection was most probably underestimated considerably, due to, among others, loss of infected root cortex during root growth, sampling and staining. It is concluded that apple cuttings rely on VA-mycorrhizal P-uptake at least in low P soils. In high P soils, apple cuttings may profit predominantly from the uptake of Zn and Cu by the fungal symbionts.  相似文献   
85.
In order to manipulate the shoot demand for mineral nutrients per unit root weight, maize ( Zea mays L.) seedlings were grown in nutrient solution with different temperatures in the root zone and at the shoot base. The aerial temperature was kept uniform at 24/20°C day/night. At a root zone temperature (RZT) of 24°C, shoot growth was reduced by decreasing the shoot base temperature (SBT) to 12°C; at a RZT of 12°C, shoot growth was increased by raising the SBT to 24°C. At both RZT root growth was not affected by the SBT. Thus, the shoot demand for nutrients per unit root was either increased by raising, or decreased by lowering the SBT. The net uptake rate of potassium (K), as determined from accumulation rates between sequential harvests, was not affected within the first 3 days after lowering the SBT, whereas net translocation rates of K into the shoot and translocation rates in the xylem exudate of decapitated plants were markedly reduced. Obviously, translocation of K into the shoot seems to be regulated independently from K uptake into the root cells. Translocation rates of K in the xylem exudate of decapitated plants were markedly reduced when the nutrient solution was replaced by CaCl2 solution during exudation. But, depending on the SBT before decapitation, significant differences remained in the translocation rates of K even when K uptake from the nutrient solution was prevented.
From the results it is suggested that xylem loading of K is regulated separately from K uptake from the external solution and that the adaptation of K translocation to shoot demand is coupled with an altered capacity of the root for xylem loading.  相似文献   
86.
Soil born fungi such as Phytium ultimum, Fusarium ssp., and Rhizoctonia solani (Kühn) severely restrict stand establishment of common bean (Phaseolus vulgaris L.) on acid soils of the Tropics. Calcium application is known to alleviate fungal infection in many legumes but the causes are still unclear. To investigate environmental factors and physiological mechanisms involved, growth chamber experiments were conducted with an acid sandy soil from Mexico. Treatments were soil liming at a rate of 0.67 g Ca(OH)2 kg-1, gypsum application at 0.49 g CaSO4 2H2O kg-1 soil placed around the seed, and an untreated control. Beans were grown under three temperature regimes with constant night and one constant day vs. two sinusoidal day temperatures. To examine patterns of seed and seedling exudation at regular intervals leachates of germinating seeds were collected on filter paper soaked with equilibrium solutions from soils of the three treatments. The severity of root rot in the control treatment was highest when plants were stressed by temperature extremes. At a sinusoidal day temperature peaking at 40°C soil liming and gypsum application to the seed increased the number of healthy seedlings similarly by over 60%. However, only liming which effectively eliminated growth constraints by low pH and high aluminum concentrations led to an increase in hypocotyl elongation by 22% and in total root length by 8%. Both calcium amendments increased the calcium and potassium contents in the hypocotyl tissue. From seeds exposed to the equilibrium solution of unlimed soil with pH 3.7, 1 mM Ca, and 0.6 mM Al considerable amounts of amino acids and carbohydrates were leached. In contrast, exposure to the equilibrium solution from limed soil with pH 4.3, 3 mM Ca, and negligible concentrations of Al led to a net uptake of amino acids and decreased leaching of carbohydrates. Exposure to the equilibrium solution of the gypsum treatment with pH 3.6, 20 mM Ca, and 1.2 mM Al resulted in a somewhat smaller net uptake of amino acids compared to liming. During germination pH around the seeds steeply increased in the untreated control but significantly less with both amendments. The results indicate that pH and the Ca/Al ratio in the soil solution around bean seeds determine their pattern of exudation and solute uptake. For bean germination and early growth on acid soils locally placed application of small amounts of gypsum as seed pelleting seems as effective as soil liming in reducing the incidence of root rot. The results indicate that this may be accomplished by decreasing the amount of leachates available for fungal development.  相似文献   
87.
The actinomycete Gordonia sp. and the bacterium Pseudomonas fluorescens Pf-5 were grown in liquid media (pH 6.5) with phosphate adsorbed to the Fe-oxide/hydroxide goethite (Goe-P) and with soluble phosphate (0.1 mM or 1.0 mM P as KH2PO4). The two isolates showed distinct differences in their physiology. The pH of the medium was increased by Gordonia sp. by 1.1-1.7 units while it was decreased by P. fluorescens by 1.4-2.4 units. In all treatments the concentration of organic acids in the media with Gordonia sp. was up to 10 times lower (0.4-10.9 micromol L(-1)) than in media with P. fluorescens (33.4-84.4 micromol L(-1)). Gordonia sp. produced five different organic acids in varying amounts depending on P source and time. In contrast, P. fluorescens exuded mainly citrate and only small amounts of two to three other organic acids irrespective of P source or time.  相似文献   
88.
Abstract: A simple and sensitive detection system, using polymerase chain reaction (PCR) and a soil microcosm, was developed to detect a bacterial catabolic gene in the rhizosphere. The inoculated population of Alcaligenes eutrophus JMP134, a phenol and 2,4-dichlorophenoxy acetic acid utilizer, was readily detected by this technique, which permitted taking of samples from specific locations of root (including rhizosphere) and soil. The number of JMP134 viable cells (102–103 cells), typically picked up by the nitrocellulose filter strip method, yielded sufficient amount of the target DNA to be detected by PCR. Primers encoding metapyrocatechase I (MPC I; catechol 2,3-dioxygenase) enabled the discrimination of at least five viable cells of JMP134 among the indigenous microorganisms inhabiting bush bean roots. This simplified PCR detection procedure facilitated monitoring of the specific degradative gene in the rhizosphere in only 5 h.  相似文献   
89.
Effect of acid irrigation and liming on root growth of Norway spruce   总被引:3,自引:0,他引:3  
Hahn  G.  Marschner†  H. 《Plant and Soil》1998,199(1):11-22
The effect of acid irrigation and liming on fine root growth of Norway spruce (Picea abies [L.] Karst.) was studied in an approximately 80-year-old forest stand in southern Germany (Höglwald). Root growth was measured mainly on root windows and in addition by soil core sampling. Root growth rate showed a typical pattern in the course of a year with a maximum in August. Acid irrigation depressed root growth rate, whereas liming, particularly in combination with acid irrigation, markedly increased root growth in the humic layer and the upper 0–5 cm of the mineral soil. The treatment effects on root growth in the mineral soil below 5 cm were small and not significant. Root growth rate was not correlated with the concentration of aluminium (Al) or the molar ratio of calcium (Ca) to Al in the soil solution. The results suggest that inhibition of root growth by acid irrigation is a direct effect of high proton concentrations in the irrigation water, and that enhancement of root growth by liming is caused by an improved supply of mineral nutrients and higher biological activity.  相似文献   
90.
Proteoid roots are bottlebrush-like clusters of rootlets which form along lateral roots. They are characteristic of most species of the Proteaceae, which are mainly distributed in Australia and South Africa. Homologous root clusters are present in species of the Casuarinaceae, Mimosaceae, Fabaceae, Myricaceae and Moraceae. Many similarities exist between these species in relation to morphology and function of root clusters. Many are non-mycorrhizal and are highly efficient in phosphorus (P) acquisition. In these species, proteoid roots and proteoid-like root clusters are abundant when grown on infertile soils. Their formation is predominantly affected by the P status of the plants, being induced at low P levels and repressed at high P levels. Proteoid roots and proteoid-like root clusters play an important role in acquisition of P and other mineral nutrients. Although increase in root surface area may be a contributing factor, in many species these roots excrete large amounts of organic acids and phenolics. The excretion of these compounds in a small soil volume gives rise to extensive nutrient mobilization by acidification, reduction and chelation of sparingly soluble forms of P and micronutrients such as Fe and Mn.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号