首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   4篇
  37篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2014年   2篇
  2013年   4篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2009年   6篇
  2008年   2篇
  2007年   2篇
  2006年   2篇
  2002年   1篇
  2001年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1990年   1篇
  1989年   1篇
  1978年   1篇
排序方式: 共有37条查询结果,搜索用时 0 毫秒
31.
Etiopathogenetic regulatory disorders of epidermal metabolism and the subsequent changes in the molecular pattern of the stratum corneum play an important role in the clinical differentiation of particular dermatoses (e.g., psoriasis, atopic dermatitis). In this study we present in vitro Fourier transform Raman spectra of the stratum corneum from healthy skin, as well as from clinically undiseased skin of the right heel of atopic and psoriatic volunteers. Differences in the averaged spectra were detected, particularly in the spectral ranges of 1112-1142 (lipid band), 1185-1220, and 1394-1429 cm(-1). By using the first derivative of the averaged spectra and/or a statistical evaluation of the spectroscopic data it was possible to distinguish the skin types examined.  相似文献   
32.
33.
Actinomycin D (ActD) is a DNA-binding antitumor antibiotic that appears to act in vivo by inhibiting RNA polymerase. The mechanism of DNA binding of ActD has attracted much attention because of its strong preference for 5'-dGpdC-3' sequences. Binding is thought to involve intercalation of the tricyclic aromatic phenoxazone ring into a GC step, with the two equivalent cyclic pentapeptide lactone substituents lying in the minor groove and making hydrogen bond contacts with the 2-amino groups of the nearest neighbor guanines. Recent studies have indicated, however, that binding is also influenced by next-nearest neighboring bases. We have examined this higher order specificity using 7-azido-actinomycin-D as a photoaffinity probe, and DNA sequencing techniques to quantitatively monitor sites of covalent photoaddition. We found that GC doublets were strongly preferred only if the 5'-flanking base was a pyrimidine and the 3'-flanking base was not cytosine. In addition we observed a previously unreported preference for binding at a GG doublet in the sequence 5'-TGGG-3'.  相似文献   
34.
The DNA photoaffinity ligands, 7-azidoactinomycin D and 8-azidoethidium, form DNA adducts that cause chain cleavage upon treatment with piperidine. Chemical DNA sequencing techniques were used to detect covalent binding. The relative preferences for modifications of all possible sites defined by a base pair step (e.g. GC) were determined within all quartet contexts such as (IGCJ). These preferences are described in terms of 'effective site occupations', which express the ability of a ligand to covalently modify some base in the binding site. Ideally, the effective site occupations measured for photoaffinity agents can also be related to site-specific, non-covalent association constants of the ligand. The sites most reactive with 7-azidoactinomycin D were those preferred for non-covalent binding of unsubstituted actinomycin D. GC sites were most reactive, but next-nearest neighbors exerted significant influences on reactivity. GC sites in 5'-(pyrimidine)GC(purine)-3' contexts, particularly TGCA, were most reactive, while reactivity was strongly suppressed for GC sites with a 5'-flanking G, or a 3'-flanking C. High reactivities were also observed for bases in the first (5') GG steps in TGGT, TGGG and TGGGT sequences recently shown to bind actinomycin D with high affinity. Pyrimidine-3',5'-purine steps and GG steps flanked by a T were most preferred by 8-azidoethidium, in agreement with the behavior of unsubstituted ethidium. The good correspondence between expected and observed covalent binding preferences of these two azide analogs demonstrates that photoaffinity labeling can identify highly preferred sites of non-covalent DNA binding by small molecules.  相似文献   
35.
The soil of the former Lake Texcoco is a saline alkaline environment where anthropogenic drainage in some areas has reduced salt content and pH. Potential methane (CH4) consumption rates were measured in three soils of the former Lake Texcoco with different electrolytic conductivity (EC) and pH, i.e. Tex-S1 a >18 years drained soil (EC 0.7 dS m?1, pH 8.5), Tex-S2 drained for ~10 years (EC 9.0 dS m?1, pH 10.3) and the undrained Tex-S3 (EC 84.8 dS m?1, pH 10.3). An arable soil from Alcholoya (EC 0.7 dS m?1, pH 6.7), located nearby Lake Texcoco was used as control. Methane oxidation in the soil Tex-S1 (lowest EC and pH) was similar to that in the arable soil from Alcholoya (32.5 and 34.7 mg CH4 kg?1 dry soil day?1, respectively). Meanwhile, in soils Tex-S2 and Tex-S3, the potential CH4 oxidation rates were only 15.0 and 12.8 mg CH4 kg?1 dry soil day?1, respectively. Differences in CH4 oxidation were also related to changes in the methane-oxidizing communities in these soils. Sequence analysis of pmoA gene showed that soils differed in the identity and number of methanotrophic phylotypes. The Alcholoya soil and Tex-S1 contained phylotypes grouped within the upland soil cluster gamma and the Jasper Ridge, California JR-2 clade. In soil Tex-S3, a phylotype related to Methylomicrobium alcaliphilum was detected.  相似文献   
36.
37.
Assimilatory nitrate reduction (ANR) is a pathway wherein NO3 is reduced to NH4+, an N species that can be incorporated into the biomass. There is little information about the ANR genes in Archaea and most of the known information has been obtained from cultivable species. In this study, the diversity of the haloarchaeal assimilatory nitrate-reducing community was studied in an extreme saline alkaline soil of the former lake Texcoco (Mexico). Genes coding for the assimilatory nitrate reductase ( narB ) and the assimilatory nitrite reductase ( nirA ) were used as functional markers. Primers to amplify and detect partial narB and nirA were designed. The analysis of these amplicons by cloning and sequencing showed that the deduced protein fragments shared >45% identity with other NarB and NirA proteins from Euryarchaeota and <38% identity with other nitrate reductases from Bacteria and Crenarchaeota . Furthermore, these clone sequences were clustered within the class Halobacteria with strong support values in both constructed dendrograms, confirming that desired PCR products were obtained. The metabolic capacity to assimilate nitrate by these haloarchaea seems to be important given that at pH 10 and higher, NH4+ is mostly converted to toxic and volatile NH3, and NO3 becomes the preferable N source.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号