首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94篇
  免费   6篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   6篇
  2014年   10篇
  2013年   5篇
  2012年   6篇
  2011年   4篇
  2010年   10篇
  2009年   4篇
  2008年   6篇
  2007年   3篇
  2006年   6篇
  2005年   5篇
  2004年   2篇
  2003年   2篇
  1999年   2篇
  1998年   6篇
  1997年   2篇
  1996年   3篇
  1993年   3篇
  1992年   1篇
  1990年   2篇
  1988年   1篇
  1984年   2篇
  1980年   2篇
  1978年   1篇
排序方式: 共有100条查询结果,搜索用时 31 毫秒
61.
This protocol describes tissue engineering of synchronously contractile cardiac constructs by culturing cardiac cell populations on porous scaffolds (in some cases with an array of channels) and bioreactors with perfusion of culture medium (in some cases supplemented with an oxygen carrier). The overall approach is 'biomimetic' in nature as it tends to provide in vivo-like oxygen supply to cultured cells and thereby overcome inherent limitations of diffusional transport in conventional culture systems. In order to mimic the capillary network, cells are cultured on channeled elastomer scaffolds that are perfused with culture medium that can contain oxygen carriers. The overall protocol takes 2-4 weeks, including assembly of the perfusion systems, preparation of scaffolds, cell seeding and cultivation, and on-line and end-point assessment methods. This model is well suited for a wide range of cardiac tissue engineering applications, including the use of human stem cells, and high-fidelity models for biological research.  相似文献   
62.
Only a small fraction of the antibodies in a traditional polyclonal antibody mixture recognize the target of interest, frequently resulting in undesirable polyreactivity. Here, we show that high-quality recombinant polyclonals, in which hundreds of different antibodies are all directed toward a target of interest, can be easily generated in vitro by combining phage and yeast display. We show that, unlike traditional polyclonals, which are limited resources, recombinant polyclonal antibodies can be amplified over one hundred million-fold without losing representation or functionality. Our protocol was tested on 9 different targets to demonstrate how the strategy allows the selective amplification of antibodies directed toward desirable target specific epitopes, such as those found in one protein but not a closely related one, and the elimination of antibodies recognizing common epitopes, without significant loss of diversity. These recombinant renewable polyclonal antibodies are usable in different assays, and can be generated in high throughput. This approach could potentially be used to develop highly specific recombinant renewable antibodies against all human gene products.  相似文献   
63.
The great challenges for researchers working in the field of vaccinology are optimizing DNA vaccines for use in humans or large animals and creating effective single-dose vaccines using appropriated controlled delivery systems. Plasmid DNA encoding the heat-shock protein 65 (hsp65) (DNAhsp65) has been shown to induce protective and therapeutic immune responses in a murine model of tuberculosis (TB). Despite the success of naked DNAhsp65-based vaccine to protect mice against TB, it requires multiple doses of high amounts of DNA for effective immunization. In order to optimize this DNA vaccine and simplify the vaccination schedule, we coencapsulated DNAhsp65 and the adjuvant trehalose dimycolate (TDM) into biodegradable poly (DL-lactide-co-glycolide) (PLGA) microspheres for a single dose administration. Moreover, a single-shot prime-boost vaccine formulation based on a mixture of two different PLGA microspheres, presenting faster and slower release of, respectively, DNAhsp65 and the recombinant hsp65 protein was also developed. These formulations were tested in mice as well as in guinea pigs by comparison with the efficacy and toxicity induced by the naked DNA preparation or BCG. The single-shot prime-boost formulation clearly presented good efficacy and diminished lung pathology in both mice and guinea pigs.  相似文献   
64.
65.
66.
Insulators or chromatin boundary are DNA elements that organize the genome into discrete regulatory domains by limiting the actions of enhancers and silencers through a “positional-blocking mechanism”. The role of these sequences, both in modulation of the enhancers range of action (enhancer–promoter selectivity) and in the organization of the chromatin in functional domains, is emerging strongly in these last years. There is a great interest in identifying new insulators because deeper knowledge of these elements can help understand how cis-regulatory elements coordinate the expression of the target genes. However, while insulators are critical in gene regulation and genome functioning, only a few have been reported so far. Here, we describe a new insulator sequence that is located in the 5′UTR of the Drosophila retrotransposon ZAM. We have used an “enhancer–blocking assay” to test its effects on the activity of the enhancer in transiently transfected Drosophila S2R+ cell line. Moreover, we show that the new insulator is able to affect significantly the enhancer–promoter interaction in the human cell line HEK293. These results suggest the possibility of employing the ZAM insulator in gene transfer protocols from insects to mammals in order to counteract the transgene positional and genotoxic effects.  相似文献   
67.
In this study, we aimed at validating a rotary cell culture system (RCCS) bioreactor with medium recirculation and external oxygenation, for cartilage tissue engineering. Primary bovine and human culture-expanded chondrocytes were seeded into non-woven meshes of esterified hyaluronan (HYAFF-11), and the resulting constructs were cultured statically or in the RCCS, in the presence of insulin and TGFbeta3, for up to 4 weeks. Culture in the RCCS did not induce significant differences in the contents of glycosaminoglycans (GAG) and collagen deposited, but markedly affected their distribution. In contrast to statically grown tissues, engineered cartilage cultured in the RCCS had a bi-zonal structure, consisting of an outgrowing fibrous capsule deficient in GAG and rich in collagen, and an inner region more positively stained for GAG. Structurally, trends were similar using primary bovine or expanded human chondrocytes, although the human cells deposited inferior amounts of matrix. The use of the presented RCCS, in conjunction with the described medium composition, has the potential to generate bi-zonal tissues with features qualitatively resembling the native meniscus.  相似文献   
68.
Regenerated cellulose-silk fibroin blends fibers   总被引:1,自引:0,他引:1  
Fibers made of cellulose and silk fibroin at different composition were wet spun from solutions by using N-methylmorpholine N-oxide hydrates (NMMO/H(2)O) as solvent and ethanol as coagulant. Different spinning conditions were used. The fibers were characterized by different techniques: FTIR-Raman, scanning electron microscopy, wide-angle x-ray diffraction, DSC analysis. The results evidence a phase separation in the whole blends compositions. The tensile characterization, however, illustrates that the properties of the blends fibers are higher respect to a linear behaviour between the pure polymers, confirming a good compatibility between cellulose and silk fibroin. The fibers containing 75% of cellulose show better mechanical properties than pure cellulose fibers: modulus of about 23 GPa and strength to break of 307 MPa.  相似文献   
69.

Background

Immunogenetic evidence indicates that cytotoxic T lymphocytes (CTLs) specific for the weak CTL antigen HBZ limit HTLV-1 proviral load in vivo, whereas there is no clear relationship between the proviral load and the frequency of CTLs specific for the immunodominant antigen Tax. In vivo, circulating HTLV-1-infected cells express HBZ mRNA in contrast, Tax expression is typically low or undetectable. To elucidate the virus-suppressing potential of CTLs targeting HBZ, we compared the ability of HBZ- and Tax-specific CTLs to lyse naturally-infected cells, by co-incubating HBZ- and Tax-specific CTL clones with primary CD4+ T cells from HLA-matched HTLV-1-infected donors. We quantified lysis of infected cells, and tested whether specific virus-induced host cell surface molecules determine the susceptibility of infected cells to CTL-mediated lysis.

Results

Primary infected cells upregulated HLA-A*02, ICAM-1, Fas and TRAIL-R1/2 in concert with Tax expression, forming efficient targets for both HTLV-1-specific CTLs and CTLs specific for an unrelated virus. We detected expression of HBZ mRNA (spliced isoform) in both Tax-expressing and non-expressing infected cells, and the HBZ26–34 epitope was processed and presented by cells transfected with an HBZ expression plasmid. However, when coincubated with primary cells, a high-avidity HBZ-specific CTL clone killed significantly fewer infected cells than were killed by a Tax-specific CTL clone. Finally, incubation with Tax- or HBZ-specific CTLs resulted in a significant decrease in the frequency of cells expressing high levels of HLA-A*02.

Conclusions

HTLV-1 gene expression in primary CD4+ T cells non-specifically increases susceptibility to CTL lysis. Despite the presence of HBZ spliced-isoform mRNA, HBZ epitope presentation by primary cells is significantly less efficient than that of Tax.
  相似文献   
70.
Bona E  Marsano F  Cavaletto M  Berta G 《Proteomics》2007,7(7):1121-1130
Cannabis sativa is an annual herb with very high biomass and capability to absorb and accumulate heavy metals in roots and shoots; it is therefore a good candidate for phytoremediation of soils contaminated with metals. Copper is an essential micronutrient for all living organisms, it participates as an important redox component in cellular electron transport chains; but is extremely toxic to plants at high concentrations. The aim of this work was to investigate copper effects on the root proteome of C. sativa, whose genome is still unsequenced. Copper stress induced the suppression of two proteins, the down-regulation of seven proteins, while five proteins were up-regulated. The resulting differences in protein expression pattern were indicative of a plant adaptation to chronic stress and were directed to the reestablishment of the cellular and redox homeostasis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号