首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   181篇
  免费   25篇
  206篇
  2022年   1篇
  2021年   2篇
  2020年   3篇
  2019年   1篇
  2018年   1篇
  2016年   5篇
  2015年   2篇
  2014年   5篇
  2013年   8篇
  2012年   9篇
  2011年   9篇
  2010年   10篇
  2009年   3篇
  2008年   10篇
  2007年   12篇
  2006年   11篇
  2005年   4篇
  2004年   6篇
  2003年   8篇
  2002年   6篇
  2001年   6篇
  2000年   8篇
  1999年   5篇
  1998年   5篇
  1997年   2篇
  1994年   2篇
  1993年   3篇
  1992年   4篇
  1991年   4篇
  1990年   6篇
  1989年   3篇
  1988年   5篇
  1987年   3篇
  1986年   3篇
  1985年   2篇
  1984年   4篇
  1983年   5篇
  1982年   1篇
  1981年   4篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1976年   4篇
  1973年   2篇
  1970年   1篇
排序方式: 共有206条查询结果,搜索用时 15 毫秒
81.
R.F. La Monica  B.L. Marrs 《BBA》1976,423(3):431-439
Various respiratory electron transport activities of Rhodopseudomonas capsulata were studied in membrane fragments prepared from photosynthetically grown cells of a parental strain and two terminal oxidase-defective mutant strains. The NADH and succinate oxidase activities of the mutant having a functional N,N,N1,N1-tetramethyl-p-phenylenediamine oxidase, M6, were considerably more sensitive to inhibition by either antimycin A or cyanide than the corresponding activities of the mutant lacking a functional N,N,N,1N1-tetramethyl-p-phenylenediamine oxidase, M7. The parental strain, Z-1, but not the mutants, showed biphasic inhibitory responses of NADH and succinate oxidase activities with either antimycin A or cyanide. In certain reactions no differences in inhibitor susceptibility were found among the strains tested, implying that the pathways involved were unaffected in the mutants. In this category were the actions of rotenone on NADH oxidase, antimycin A on cytochrome c reductase and, in M6 and Z-1, cyanide on N,N,N′,N′-tetramethyl-p-phenylenediamine oxidase. These results suggest that the respiratory chain of the parental strain branches at the ubiquinone-cytochrome b region into two pathways, each branch goes to a distinct terminal oxidase, and either may be blocked independently by genetic mutation.  相似文献   
82.
Numerous in vitro biofilm model systems are available to study oral biofilms. Over the past several decades, increased understanding of oral biology and advances in technology have facilitated more accurate simulation of intraoral conditions and have allowed for the increased generalizability of in vitro oral biofilm studies. The integration of contemporary systems with confocal microscopy and 16S rRNA community profiling has enhanced the capabilities of in vitro biofilm model systems to quantify biofilm architecture and analyse microbial community composition. In this review, we describe several model systems relevant to modern in vitro oral biofilm studies: the constant depth film fermenter, Sorbarod perfusion system, drip–flow reactor, modified Robbins device, flowcells and microfluidic systems. We highlight how combining these systems with confocal microscopy and community composition analysis tools aids exploration of oral biofilm development under different conditions and in response to antimicrobial/anti-biofilm agents. The review closes with a discussion of future directions for the field of in vitro oral biofilm imaging and analysis.  相似文献   
83.
84.
85.
To enable direct testing of a range of potential toxins or pathogens that might be involved in grass sickness, equine thoracic sympathetic chain ganglion cell lines were established from primary cell cultures by retroviral-mediated transduction of the temperature-sensitive mutant of the establishment oncogene encoding SV40 large T antigen. Morphological and behavioral features, temperature dependence, and immunocytochemical characteristics of the cell lines were investigated. The majority of cells were noradrenergic neurons in which dopamine-β-hydroxylase, the enzyme that catalyzes norepinephrine synthesis, and neuropeptide Y coexisted. Cells treated with plasma from grass sickness cases that had previously been shown to induce autonomic nervous system damage when injected into normal horses showed significantly decreased mitochondrial function after 1 day. After 3 days exposure most cells showed severe degeneration in contrast to those treated with normal plasma. Liver and lung cell lines were also susceptible to plasma, suggesting that the toxin is not specifically neurotoxic. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
86.
Question: How is vegetation succession on coal mine wastes under a Mediterranean climate affected by the restoration method used (topsoil addition or not)? How are plant successional processes influenced by local landscape and soil factors? Location: Reclaimed coal mines in the north of Palencia province, northern Spain (42°47′‐42°50′ N, 4°32′‐4°53′ W). Methods: In Jun–Jul 2008, vascular plant species cover was monitored in 31 coal mines. The mines, which had been restored using two restoration methods (topsoil addition or not), comprised a chronosequence of different ages from 1 to 40 yr since restoration started. Soil and environmental factors at each mine were monitored and related to species cover using a combination of ordination methods and Huisman–Olff–Fresco modeling. Results: Plant succession was affected by restoration method . Where topsoil was added, succession was influenced by age since restoration and soil pH. Where no topsoil was added, soil factors seem to arrest succession. Vegetation composition on topsoiled sites showed a gradient with age, from the youngest, with early colonizing species, to oldest, with an increase in woody species. Vegetation on non‐topsoiled sites comprised mainly early‐successional species. Response to age and pH of 37 species found on topsoiled mines is described. Conclusions: Restoration of coal mines under this Mediterranean climate can be relatively fast if topsoil is added, with a native shrub community developing after 15 yr. However, if topsoil is not used, it takes more than 40 yr. For topsoiled mines, the species found in the different successional stages were identified, and their tolerance to soil pH was derived. This information will assist future restoration projects in the area.  相似文献   
87.
The initial colonization phase is the crucial start point for succession and therefore for restoration. However, little is known about abiotic factors that influence the early stages of revegetation dynamics on restored coal mines, particularly in a Mediterranean climate. This information is crucial for improving our ability to reclaim land despoiled by mining. Here, we characterized the short-term plant community development in the first 3 years after hydroseeding on a topographically diverse reclaimed open-pit coal mines in Spain. Topography influenced both community composition and diversity producing different trajectories between the three different aspects (north-facing, south-facing, flat). Hydroseeded species provided most of the initial vegetation cover, which brought about most of the compositional differences between these aspects. We also found that the changing climate through the growing season also influenced floristic composition and diversity. Summer drought reduced the cover of hydroseeded perennial species and allowed native species to colonize. These results emphasize the need to take topography into account when developing reclamation management plans in Mediterranean ecosystems, and an acknowledgement that climate might drive the succession in the desired direction, hence increasing success in restoring mining impacts.  相似文献   
88.
89.
Renal ischemia and in vitro ATP depletion result in disruption of the epithelial tight junction barrier, which is accompanied by breakdown of plasma membrane polarity. Tight junction formation is regulated by evolutionarily conserved complexes, including that of atypical protein kinase C (aPKC), Par3, and Par6. The aPKC signaling complex is activated by Rac and regulated by protein phosphorylation and associations with other tight junction regulatory proteins, for example, mLgl. In this study, we examined the role of aPKC signaling complex during ATP depletion and recovery in Madin-Darby canine kidney cells. ATP depletion reduced Rac GTPase activity and induced Par3, aPKC, and mLgl-1 redistribution from sites of cell-cell contact, which was restored following recovery from ATP depletion. Zonula occludens (ZO)-1 and Par3 phosphorylation was reduced and association of aPKC with its substrates Par3 and mLgl-1 was stabilized in ATP-depleted Madin-Darby canine kidney cells. ATP depletion also induced a stable association of Par3 with Tiam-1, a Rac GTPase exchange factor, which explains how aPKC and Rac activities were suppressed. Experimental inhibition of aPKC during recovery from ATP depletion interfered with reassembly of ZO-1 and Par3 at cell junctions. These data indicate that aPKC signaling is impaired during ATP depletion, participates in tight junction disassembly during cell injury and is important for tight junction reassembly during recovery. ischemia; atypical PKC; Par3; zonula occludens-1; mLgl-1  相似文献   
90.
Polyglutamine (polyQ) expansions cause neurodegeneration that is associated with protein misfolding and influenced by functional properties of the host protein. The polyQ disease protein, ataxin-3, has predicted ubiquitin-specific protease and ubiquitin-binding domains, which suggest that ataxin-3 functions in ubiquitin-dependent protein surveillance. Here we investigate direct links between the ubiquitin-proteasome pathway and ataxin-3. In neural cells we show that, through its ubiquitin interaction motifs (UIMs), normal or expanded ataxin-3 binds a broad range of ubiquitinated proteins that accumulate when the proteasome is inhibited. The expression of a catalytically inactive ataxin-3 (normal or expanded) causes ubiquitinated proteins to accumulate in cells, even in the absence of proteasome inhibitor. This accumulation of ubiquitinated proteins occurs primarily in the cell nucleus in transfected cells and requires intact UIMs in ataxin-3. We further show that both normal and expanded ataxin-3 can undergo oligoubiquitination. Although this post-translational modification occurs in a UIM-dependent manner, it becomes independent of UIMs when the catalytic cysteine residue of ataxin-3 is mutated, suggesting that ataxin-3 ubiquitination is itself regulated in trans by its own de-ubiquitinating activity. Finally, pulse-chase labeling reveals that ataxin-3 is degraded by the proteasome, with expanded ataxin-3 being as efficiently degraded as normal ataxin-3. Mutating the UIMs does not alter degradation, suggesting that UIM-mediated oligoubiquitination of ataxin-3 modulates ataxin-3 function rather than stability. The function of ataxin-3 as a de-ubiquitinating enzyme, its post-translational modification by ubiquitin, and its degradation via the proteasome link this polyQ protein to ubiquitin-dependent pathways already implicated in disease pathogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号