首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   537篇
  免费   73篇
  2021年   5篇
  2020年   9篇
  2018年   6篇
  2017年   7篇
  2016年   6篇
  2015年   12篇
  2014年   10篇
  2013年   19篇
  2012年   43篇
  2011年   22篇
  2010年   19篇
  2009年   16篇
  2008年   24篇
  2007年   25篇
  2006年   21篇
  2005年   22篇
  2004年   13篇
  2003年   17篇
  2002年   20篇
  2001年   7篇
  2000年   12篇
  1999年   14篇
  1998年   7篇
  1995年   6篇
  1993年   6篇
  1992年   11篇
  1991年   5篇
  1990年   14篇
  1989年   8篇
  1988年   11篇
  1987年   12篇
  1985年   6篇
  1984年   7篇
  1983年   5篇
  1981年   4篇
  1980年   7篇
  1979年   6篇
  1978年   9篇
  1977年   11篇
  1976年   6篇
  1975年   13篇
  1974年   12篇
  1973年   10篇
  1972年   9篇
  1971年   8篇
  1970年   12篇
  1969年   9篇
  1968年   5篇
  1966年   6篇
  1965年   4篇
排序方式: 共有610条查询结果,搜索用时 203 毫秒
601.
We studied 2001 foetuses during the period of minimal solar activity of solar cycle 21 and 2265 foetuses during the period of maximal solar activity of solar cycle 22, in all women aged 37 years and over who underwent free prenatal diagnosis in four hospitals in the greater Tel Aviv area. There were no significant differences in the total incidence of chromosomal abnormalities or of trisomy between the two periods (2.15% and 1.8% versus 2.34% and 2.12%, respectively). However, the trend of excessive incidence of chromosomal abnormalities in the period of maximal solar activity suggests that a prospective study in a large population would be required to rule out any possible effect of extreme solar activity.  相似文献   
602.
603.
604.
605.
606.
607.
In smooth muscle, the gating of dihydropyridine-sensitive Ca2+ channels may either be stochastic and voltage dependent or coordinated among channels and constitutively active. Each form of gating has been proposed to be largely responsible for Ca2+ influx and determining the bulk average cytoplasmic Ca2+ concentration. Here, the contribution of voltage-dependent and constitutively active channel behavior to Ca2+ signaling has been studied in voltage-clamped single vascular and gastrointestinal smooth muscle cells using wide-field epifluorescence with near simultaneous total internal reflection fluorescence microscopy. Depolarization (−70 to +10 mV) activated a dihydropyridine-sensitive voltage-dependent Ca2+ current (ICa) and evoked a rise in [Ca2+] in each of the subplasma membrane space and bulk cytoplasm. In various regions of the bulk cytoplasm the [Ca2+] increase ([Ca2+]c) was approximately uniform, whereas that of the subplasma membrane space ([Ca2+]PM) had a wide range of amplitudes and time courses. The variations that occurred in the subplasma membrane space presumably reflected an uneven distribution of active Ca2+ channels (clusters) across the sarcolemma, and their activation appeared consistent with normal voltage-dependent behavior. Indeed, in the present study, dihydropyridine-sensitive Ca2+ channels were not normally constitutively active. The repetitive localized [Ca2+]PM rises (“persistent Ca2+ sparklets”) that characterize constitutively active channels were observed rarely (2 of 306 cells). Neither did dihydropyridine-sensitive constitutively active Ca2+ channels regulate the bulk average [Ca2+]c. A dihydropyridine blocker of Ca2+ channels, nimodipine, which blocked ICa and accompanying [Ca2+]c rise, reduced neither the resting bulk average [Ca2+]c (at −70 mV) nor the rise in [Ca2+]c, which accompanied an increased electrochemical driving force on the ion by hyperpolarization (−130 mV). Activation of protein kinase C with indolactam-V did not induce constitutive channel activity. Thus, although voltage-dependent Ca2+ channels appear clustered in certain regions of the plasma membrane, constitutive activity is unlikely to play a major role in [Ca2+]c regulation. The stochastic, voltage-dependent activity of the channel provides the major mechanism to generate rises in [Ca2+].  相似文献   
608.
609.
The vomeronasal epithelium of adult garter snakes (Thamnophis sirtalis and T. radix) was studied by light and electron microscopy. The sensory epithelium is extraordinarily thick, consisting of a supporting cell layer, a bipolar cell layer, and an undifferentiated cell layer. The supporting cell layer is situated along the luminal surface and includes supporting cells and the peripheral processes (dendrites) of bipolar neurons. The luminal surfaces of both supporting cells and bipolar neurons are covered with microvilli. Specializations of membrane junctions are always observed between adjacent cells in the subluminal region. Below the supporting cell layer, the epithelium is characterized by a columnar organization. Each column contains a population of bipolar neurons and undifferentiated cells. These cells are isolated from the underlying vascular and pigmented connective tissue by the presence of a thin sheath of satellite cells and a basal lamina. Heterogeneity of cell morphology occurs within each cell column. Generative and undifferentiated cells occupy the basal regions and mature neurons occupy the apical regions. Transitional changes in cell morphology occur within the depth of each cell column. These observations suggest that the vomeronasal cell column is the structural unit of the organ and may represent the dynamic unit for cell replacement as well. A sequential process of cell proliferation, neuronal differentiation, and maturation appears to occur in the epithelium despite the adult state of the animal.  相似文献   
610.
Previous studies have documented the ability of neural grafts to stimulate the recovery of lordosis from neurochemical deficits. However, it was unclear if grafts also could reverse deficits in lordosis caused by lesions at critical points in the neural circuit controlling this response. To address this question, female hamsters were subjected to unilateral lesions of the ventromedial hypothalamus (VMN), a structure well known for its mediation of hormonal effects on lordosis. The effects of these lesions were described by noting the ability of manual stimulation of one flank to reinstate a deteriorating lordosis response. Consistent with past results, unilateral VMN lesions decreased responsiveness to stimulation of just the contralateral flank. Females showing such lateralized decrements then received control treatments or implants into the lesioned area of basal hypothalamic tissue from a neonatal male or female hamster. Approximately 1 month later, tests of lordosis reinstatement by ipsi- or contralateral manual stimuli were repeated. Whereas lateralized decrements in responsiveness persisted in control subjects, implants of tissue from male or female neonates led to reliable improvements in lordosis, reversing the lesion-induced decrease in contralateral responsiveness. The mechanism responsible for this change is unclear, but could involve an elevation in a lordosis-facilitating neuromodulator. Alternatively, it could depend on the reinforcement or replacement of neural circuits for lordosis, possibly including those that connect the two VMNs with each other or with the periaqueductal gray of the midbrain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号